MULTIPLE CHOICE. Choose the one alternative that best completes the statement or answers the question.

Find the slope of the line passing through the given pair of points.

1) (5, 1) and (8, 3)
 A) \(\frac{4}{13} \)
 B) \(-\frac{2}{3} \)
 C) \(\frac{2}{3} \)
 D) \(\frac{3}{2} \)

2) (-9, -2) and (-3, -2)
 A) 0
 B) \(\frac{1}{3} \)
 C) \(-\frac{2}{3} \)
 D) Not defined

3) (-18, -9) and (8, -19)
 A) \(\frac{14}{5} \)
 B) \(-\frac{5}{13} \)
 C) \(\frac{5}{13} \)
 D) \(-\frac{13}{5} \)

Find the slope of the line.

4) A line parallel to \(-4x = -7y - 11\)
 A) \(\frac{4}{7} \)
 B) \(\frac{7}{4} \)
 C) \(-\frac{4}{7} \)
 D) \(\frac{11}{4} \)

5) A line perpendicular to \(-5x + 2y = -20\)
 A) -5
 B) \(\frac{5}{2} \)
 C) \(\frac{2}{5} \)
 D) \(-\frac{2}{5} \)

Find an equation in slope-intercept form (where possible) for the line.

6) Through (2, -7), parallel to \(4x + 7y = -27\)
 A) \(y = -\frac{7}{4}x - \frac{7}{4} \)
 B) \(y = -\frac{2}{7}x - \frac{27}{7} \)
 C) \(y = -\frac{4}{7}x - \frac{41}{7} \)
 D) \(y = \frac{4}{7}x + \frac{41}{7} \)

7) Through (-4, 3), perpendicular to \(2x - 5y = 7\)
 A) \(y = -\frac{5}{2}x - 7 \)
 B) \(y = -\frac{2}{5}x - \frac{2}{5} \)
 C) \(y = \frac{5}{2}x - 7 \)
 D) \(y = \frac{4}{5}x + \frac{7}{5} \)
Find the slope of the line.

8) _______

9) _______

Write a cost function for the problem. Assume that the relationship is linear.

10) A cab company charges a base rate of $2.00 plus 20 cents per minute. Let C(x) be the cost in dollars for using the cab for x minutes.
 A) C(x) = 0.20x + 2.00
 B) C(x) = 2.00x + 0.20
 C) C(x) = 2.00x - 0.20
 D) C(x) = 0.20x - 2.00

11) A cable TV company charges $29 for the basic service plus $7 for each movie channel. Let C(x) be the total cost in dollars of subscribing to cable TV, using x movie channels.
 A) C(x) = 7x - 29
 B) C(x) = 29x - 7
 C) C(x) = 29x + 7
 D) C(x) = 7x + 29

12) An electrician charges a fee of $55 plus $40 per hour. Let C(x) be the cost in dollars of using the electrician for x hours.
 A) C(x) = 40x + 55
 B) C(x) = 55x - 40
 C) C(x) = 55x + 40
 D) C(x) = 40x - 55
Find the correlation coefficient.

13) The test scores of 6 randomly picked students and the number of hours they prepared are as follows:

<table>
<thead>
<tr>
<th>Hours</th>
<th>Score</th>
</tr>
</thead>
<tbody>
<tr>
<td>4</td>
<td>54</td>
</tr>
<tr>
<td>10</td>
<td>99</td>
</tr>
<tr>
<td>5</td>
<td>99</td>
</tr>
<tr>
<td>5</td>
<td>70</td>
</tr>
<tr>
<td>3</td>
<td>72</td>
</tr>
</tbody>
</table>

A) -0.6781 B) -0.2241 C) 0.2015 D) 0.6039

14) The following are the temperatures on randomly chosen days and the amount a certain kind of plant grew (in millimeters):

<table>
<thead>
<tr>
<th>Temp</th>
<th>Growth</th>
</tr>
</thead>
<tbody>
<tr>
<td>62</td>
<td>36</td>
</tr>
<tr>
<td>76</td>
<td>39</td>
</tr>
<tr>
<td>50</td>
<td>13</td>
</tr>
<tr>
<td>51</td>
<td>33</td>
</tr>
<tr>
<td>71</td>
<td>17</td>
</tr>
<tr>
<td>46</td>
<td>6</td>
</tr>
<tr>
<td>51</td>
<td>16</td>
</tr>
<tr>
<td>44</td>
<td>16</td>
</tr>
</tbody>
</table>

A) 0 B) 0.1955 C) -0.2105 D) 0.2563

15) The following are the temperatures on randomly chosen days and the amount a certain kind of plant grew (in millimeters):

<table>
<thead>
<tr>
<th>Temp</th>
<th>Growth</th>
</tr>
</thead>
<tbody>
<tr>
<td>77</td>
<td>39</td>
</tr>
<tr>
<td>88</td>
<td>17</td>
</tr>
<tr>
<td>85</td>
<td>12</td>
</tr>
<tr>
<td>61</td>
<td>22</td>
</tr>
<tr>
<td>64</td>
<td>15</td>
</tr>
<tr>
<td>72</td>
<td>29</td>
</tr>
<tr>
<td>73</td>
<td>14</td>
</tr>
<tr>
<td>63</td>
<td>25</td>
</tr>
<tr>
<td>74</td>
<td>43</td>
</tr>
</tbody>
</table>

A) 0.0396 B) -0.3105 C) 0 D) -0.0953

Find the simple interest. Assume a 360-day year. Round results to the nearest cent.

16) $16,000 at 3% for 82 days
A) $16,109.33 B) $108.00 C) $109.33 D) $480.00

17) $16,000 at 4.5% for 108 days
A) $16,216.00 B) $720.00 C) $214.00 D) $216.00

18) $10,656 at 1.8% for 5 months
A) $95.90 B) $63.94 C) $79.92 D) $80.59

Find the amount of compound interest earned.

19) $7000 at 5% compounded quarterly for 4 years
A) $3342.19 B) $1539.23 C) $356.62 D) $8280.12

20) $5000 at 4% compounded semiannually for 4 years
A) $849.29 B) $412.16 C) $1842.85 D) $858.30

21) $8000 at 5.5% compounded monthly for 5 years
A) $185.02 B) $2455.68 C) $2525.63 D) $451.26

Solve the problem.

22) Tasha borrowed $14,000 to purchase a new car at an annual interest rate of 8.6%. She is to pay it back in equal monthly payments over a 4 year period. What is her monthly payment?
A) $25.08 B) $403.80 C) $345.74 D) $100.33

23) You want to take out a loan to buy a new car for which you need to finance $21,301. Your bank will give you a loan at 7% compounded monthly. You look at your budget and decide that you can afford a payment of $257 a month. How many years, to the nearest tenth of a year, must the loan need to be to meet these conditions?
A) 9.5 years B) 13.3 years C) 19.9 years D) 5.7 years
24) Cara has a loan from her credit union at a rate of 9.2% for which her payments are $185 per month. The interest is computed on a daily basis on the unpaid balance of the loan. If the loan balance after her last payment was $2861 and Cara makes her next payment 34 days later, how much of the payment is paid toward interest?

A) $72.11 B) $7.21 C) $24.52 D) $48.22

25) Amara borrowed $8000 to purchase a new car at an annual interest rate of 6.9%. She is to pay it back in equal monthly payments over a 3 year period. How much total interest will be paid over the period of the loan? Round to the nearest dollar.

A) $613 B) $46 C) $879 D) $1751

Solve the system of equations using any method you would like.

26) \(2x + 4y = 12\)

\[\begin{align*}
2x & = -4 \\
A) \ (-2, -4) & \quad B) \ (4, -2) & \quad C) \ (-2, 4) & \quad D) \ \text{No solution}
\end{align*}\]

27) \(x + y + z = 6\)
\(x - y + 4z = 5\)
\(2x + y + z = 4\)

A) \((3, 5, -2)\) B) \((3, -2, 5)\) C) \((-2, 5, 3)\) D) No solution

28) \(9x + 9y - z = 99\)
\(x - 6y + 6z = 38\)
\(-9x + y + z = -59\)

A) \((8, 9, 4)\) B) \((8, 4, 9)\) C) \((-8, 4, 16)\) D) No solution

29) \(6x - y - 4z = 35\)
\(-5x - 2z = -46\)
\(2y + z = 5\)

A) \((-8, 1, 16)\) B) \((8, 3, 1)\) C) \((8, 1, 3)\) D) No solution

30) \(x - y + 3z = 14\)
\(5x + z = 4\)
\(x + 2y + z = 0\)

A) \((4, -2, 0)\) B) \((0, -2, 4)\) C) \((4, 0, -2)\) D) No solution

Write the system of equations associated with the augmented matrix. Use the variables X and Y in that order.

31) \[\begin{bmatrix}
3 & -5 & 4 \\
0 & 8 & 12
\end{bmatrix}\]

A) \(x = 4\) B) \(-3x + 5y = 4\) C) \(3x - 5y = 4\) D) \(3x - 5y = 4\)

\[\begin{align*}
y & = 12 \\
y & = 12 \\
8y & = 12 \\
8x & = 12
\end{align*}\]

Provide an appropriate response.

32) Write the augmented matrix for the system.
\(6x + 4y = 30\)
\(8y = 72\)

\[\begin{bmatrix}
6 & 4 & 30 \\
0 & 8 & 72
\end{bmatrix}\]

A) \[\begin{bmatrix}
6 & 4 & 30 \\
0 & 8 & 72
\end{bmatrix}\] B) \[\begin{bmatrix}
8 & 0 & 72 \\
6 & 4 & 4
\end{bmatrix}\] C) \[\begin{bmatrix}
8 & 72 & 0 \\
6 & 4 & 30
\end{bmatrix}\] D) \[\begin{bmatrix}
30 & 4 & 6 \\
72 & 0 & 8
\end{bmatrix}\]
Find the inverse, if it exists, for the matrix.

33) \[
\begin{bmatrix}
1 & 0 \\
-4 & 5
\end{bmatrix}
\]
A) \[
\begin{bmatrix}
1 & 0 \\
5 & 1
\end{bmatrix}
\]
B) \[
\begin{bmatrix}
1 & 0 \\
-4 & 5
\end{bmatrix}
\]
C) \[
\begin{bmatrix}
1 & 0 \\
4 & 1
\end{bmatrix}
\]
D) No inverse

34) \[
\begin{bmatrix}
1 & 2 \\
0 & 2
\end{bmatrix}
\]
A) \[
\begin{bmatrix}
1 & 1 \\
0 & 1
\end{bmatrix}
\]
B) \[
\begin{bmatrix}
0 & 1 \\
1 & -1
\end{bmatrix}
\]
C) \[
\begin{bmatrix}
1 & -1 \\
0 & 1
\end{bmatrix}
\]
D) \[
\begin{bmatrix}
1 & 2 \\
0 & -1
\end{bmatrix}
\]

35) \[
\begin{bmatrix}
-2 & -3 \\
-1 & 0
\end{bmatrix}
\]
A) \[
\begin{bmatrix}
-1 & -2 \\
0 & -1
\end{bmatrix}
\]
B) \[
\begin{bmatrix}
0 & -1 \\
-1 & -2
\end{bmatrix}
\]
C) \[
\begin{bmatrix}
0 & 1 \\
1 & 2
\end{bmatrix}
\]
D) \[
\begin{bmatrix}
-2 & -1 \\
-1 & 0
\end{bmatrix}
\]

Solve the problem.

36) A company makes three chocolate candies: cherry, almond, and raisin. Matrix A gives the amount of ingredients in one batch. Matrix B gives the costs of ingredients from suppliers J and K. Multiply the matrices.

\[
A = \begin{bmatrix}
\text{sugar} & \text{choc} & \text{milk} \\
6 & 8 & 1 \\
6 & 4 & 1 \\
5 & 7 & 1
\end{bmatrix}
\]

\[
B = \begin{bmatrix}
\text{J} & \text{K} \\
4 & 3 \\
4 & 5 \\
2 & 2
\end{bmatrix}
\]

A) \[
\begin{bmatrix}
\text{J} & \text{K} \\
60 & 45 \\
44 & 55 \\
26 & 26
\end{bmatrix}
\]
B) \[
\begin{bmatrix}
\text{J} & \text{K} \\
58 & 60 \\
42 & 40 \\
50 & 52
\end{bmatrix}
\]
C) \[
\begin{bmatrix}
\text{J} & \text{K} \\
45 & 60 \\
55 & 44 \\
26 & 26
\end{bmatrix}
\]
D) \[
\begin{bmatrix}
\text{J} & \text{K} \\
58 & 60 \\
42 & 40 \\
50 & 52
\end{bmatrix}
\]
37) A company makes three chocolate candies: cherry, almond, and raisin. Matrix A gives the amount of ingredients in one batch. Matrix B gives the costs of ingredients from suppliers J and K. What is the cost of 100 batches of each candy using ingredients from supplier J?

\[
A = \begin{bmatrix}
6 & 8 & 1 \\
6 & 4 & 1 \\
5 & 7 & 1
\end{bmatrix}
\]

\[
B = \begin{bmatrix}
J & K \\
4 & 3 \\
4 & 5 \\
2 & 2
\end{bmatrix}
\]

A) $12,000
B) $15,000
C) $15,200
D) $6000

38) A company makes three chocolate candies: cherry, almond, and raisin. Matrix A gives the amount of ingredients in one batch. Matrix B gives the costs of ingredients from suppliers J and K. What is the cost of 100 batches of each candy using ingredients from supplier K?

\[
A = \begin{bmatrix}
6 & 8 & 1 \\
6 & 4 & 1 \\
5 & 7 & 1
\end{bmatrix}
\]

\[
B = \begin{bmatrix}
J & K \\
4 & 3 \\
4 & 5 \\
2 & 2
\end{bmatrix}
\]

A) $6000
B) $12,000
C) $15,200
D) $9400
Graph the feasible region for the system of inequalities. When you are choosing your answer the feasible region is represented by the shaded area.

39) $3y + x \geq -6$
 $y + 2x \leq 8$
 $y \leq 0$
 $x \geq 0$

A)

B)

C)

D)
Graph the feasible region for the system of inequalities. When you are choosing your answer the feasible region is represented by the shaded area.

\[
\begin{align*}
2x + 3y &\geq 6 \\
x - y &\geq 3 \\
y &\leq 2
\end{align*}
\]
41) $2x + 3y \geq 6$
$x - y \leq 3$
$x \geq 1$

A)

B)

C)

D)
Use the indicated region of feasible solutions to find the maximum and minimum values of the given objective function. When looking at the graph the feasible region is represented by the shaded area.

42) \(z = 18x + 10y \)

- A) Maximum of 230; minimum of 180
- B) Maximum of 180; minimum of 30
- C) Maximum of 50; minimum of 30
- D) Maximum of 230; minimum of 30

43) \(z = 11x - 18y \)

- A) Maximum of \(-76.25\); minimum of \(-108\)
- B) Maximum of 55; minimum of 0
- C) Maximum of \(-108\); minimum of 0
- D) Maximum of 55; minimum of \(-108\)

44) \(z = 8x + 8y \).

- A) Maximum of 56 minimum of 32
- B) Maximum of 48 minimum of 40
- C) Maximum of \(-32\) minimum of \(-56\)
- D) Maximum of 80; minimum of 32
Let \(A = \{1, 3, 5, 7\}; \ B = \{5, 6, 7, 8\}; \ C = \{5, 8\}; \ D = \{2, 5, 8\}; \) and \(U = \{1, 2, 3, 4, 5, 6, 7, 8\}\). Determine whether the given statement is true or false.

45) \(C \subseteq D \)
A) True
B) False
46) \(A \not\subset \{7, 5, 3, 1\} \)
A) True
B) False
47) \(B \not\subseteq \ D \)
A) True
B) False

Use the Gauss–Jordan method to solve the system of equations.

48) \[
\begin{align*}
x + y + z &= 9 \\
2x - 3y + 4z &= 7 \\
x - 4y + 3z &= -2
\end{align*}
\]
A) \[
\begin{pmatrix}
\frac{-7}{5} z + \frac{34}{5} & \frac{2}{5} z - \frac{11}{5} & z
\end{pmatrix}
\]
B) \[
\begin{pmatrix}
\frac{-7}{5} z + \frac{34}{5} & \frac{2}{5} z + \frac{11}{5} & z
\end{pmatrix}
\]
C) \[
\begin{pmatrix}
\frac{7}{5} z + \frac{34}{5} & \frac{2}{5} z + \frac{11}{5} & z
\end{pmatrix}
\]
D) \[
\begin{pmatrix}
\frac{7}{5} z + \frac{34}{5} & \frac{2}{5} z - \frac{11}{5} & z
\end{pmatrix}
\]

49) \[
\begin{align*}
3x + y + z &= 5 \\
4x + 5y - z &= -8 \\
10x + 7y + z &= 2
\end{align*}
\]
A) \[
\begin{pmatrix}
\frac{6}{11} z + \frac{33}{11} & \frac{7}{11} z + \frac{44}{11} & z
\end{pmatrix}
\]
B) \[
\begin{pmatrix}
\frac{-6}{11} z + \frac{33}{11} & \frac{7}{11} z - \frac{44}{11} & z
\end{pmatrix}
\]
C) \[
\begin{pmatrix}
\frac{6}{11} z + \frac{33}{11} & \frac{7}{11} z - \frac{44}{11} & z
\end{pmatrix}
\]
D) \[
\begin{pmatrix}
\frac{6}{11} z + \frac{33}{11} & \frac{7}{11} z - \frac{44}{11} & z
\end{pmatrix}
\]

50) \[
\begin{align*}
3x + 2y + z &= 4 \\
2x - 3y - z &= 5 \\
5x + 12y + 5z &= 2
\end{align*}
\]
A) \[
\begin{pmatrix}
\frac{-1}{13} z + \frac{22}{13} & \frac{-5}{13} z + \frac{7}{13} & z
\end{pmatrix}
\]
B) \[
\begin{pmatrix}
\frac{1}{13} z + \frac{22}{13} & \frac{-5}{13} z - \frac{7}{13} & z
\end{pmatrix}
\]
C) \[
\begin{pmatrix}
\frac{1}{13} z + \frac{22}{13} & \frac{-5}{13} z + \frac{7}{13} & z
\end{pmatrix}
\]
D) \[
\begin{pmatrix}
\frac{1}{13} z + \frac{22}{13} & \frac{-5}{13} z - \frac{7}{13} & z
\end{pmatrix}
\]

Find the value.

51) Let \(A = \begin{bmatrix} -3 & 3 \\ 0 & 2 \end{bmatrix}; \ 2A \)
A) \[
\begin{bmatrix}
-6 & 3 \\
0 & 2
\end{bmatrix}
\]
B) \[
\begin{bmatrix}
-6 & 6 \\
0 & 4
\end{bmatrix}
\]
C) \[
\begin{bmatrix}
-1 & 5 \\
2 & 4
\end{bmatrix}
\]
D) \[
\begin{bmatrix}
-6 & 6 \\
0 & 2
\end{bmatrix}
\]

52) Let \(A = \begin{bmatrix} -5 & 2 \\ 0 & 4 \end{bmatrix}; \ 3A + 4B \)
A) \[
\begin{bmatrix}
-9 & 4 \\
2 & 2
\end{bmatrix}
\]
B) \[
\begin{bmatrix}
-2 & 2 \\
-11 & 6
\end{bmatrix}
\]
C) \[
\begin{bmatrix}
-11 & 6 \\
-15 & 4
\end{bmatrix}
\]
D) \[
\begin{bmatrix}
-11 & 6 \\
-15 & 4
\end{bmatrix}
\]

53) Let \(A = \begin{bmatrix} 2 & 3 \\ 2 & 6 \end{bmatrix}; \ 3A + B \)
A) \[
\begin{bmatrix}
6 & 21 \\
3 & 36
\end{bmatrix}
\]
B) \[
\begin{bmatrix}
6 & 13 \\
5 & 24
\end{bmatrix}
\]
C) \[
\begin{bmatrix}
6 & 7 \\
5 & 12
\end{bmatrix}
\]
D) \[
\begin{bmatrix}
6 & 13 \\
1 & 12
\end{bmatrix}
\]
Use graphical methods to solve the linear programming problem.

54) Maximize \(z = 8x + 12y \)
subject to:
\[40x + 80y \leq 560 \]
\[6x + 8y \leq 72 \]
\[x \geq 0 \]
\[y \geq 0 \]

A) Maximum of 100 when \(x = 8 \) and \(y = 3 \)
B) Maximum of 120 when \(x = 3 \) and \(y = 8 \)
C) Maximum of 96 when \(x = 9 \) and \(y = 2 \)
D) Maximum of 92 when \(x = 4 \) and \(y = 5 \)

55) Minimize \(z = 0.18x + 0.12y \)
subject to:
\[2x + 6y \geq 30 \]
\[4x + 2y \geq 20 \]
\[x \geq 0 \]
\[y \geq 0 \]

A) Minimum of 1.08 when \(x = 4 \) and \(y = 3 \)
B) Minimum of 1.2 when \(x = 4 \) and \(y = 4 \)
C) Minimum of 1.86 when \(x = 9 \) and \(y = 2 \)
D) Minimum of 1.02 when \(x = 3 \) and \(y = 4 \)
56) Maximize \[z = 2x + 5y \]
subject to:
\[3x + 2y \leq 6 \]
\[-2x + 4y \leq 8 \]
\[x \geq 0 \]
\[y \geq 0 \]

A) Maximum of 10 when \(x = 0 \) and \(y = 2 \)
B) Maximum of \(\frac{34}{3} \) when \(x = \frac{2}{3} \) and \(y = 2 \)
C) Maximum of \(\frac{49}{4} \) when \(x = \frac{1}{2} \) and \(y = \frac{9}{4} \)
D) Maximum of 19 when \(x = 2 \) and \(y = 3 \)

Use a Venn diagram to answer the question.

57) At East Zone University (EZU) there are 784 students taking College Algebra or Calculus. 315 are taking College Algebra, 509 are taking Calculus, and 40 are taking both College Algebra and Calculus. How many are taking Algebra but not Calculus?
A) 275
B) 744
C) 235
D) 469

58) At East Zone University (EZU) there are 896 students taking College Algebra or Calculus. 520 are taking College Algebra, 407 are taking Calculus, and 31 are taking both College Algebra and Calculus. How many are taking Calculus but not Algebra?
A) 865
B) 376
C) 458
D) 489

59) A survey of 240 families showed that
91 had a dog;
70 had a cat;
31 had a dog and a cat;
91 had neither a cat nor a dog, and in addition did not have a parakeet;
7 had a cat, a dog, and a parakeet.
How many had a parakeet only?
A) 19
B) 34
C) 24
D) 29
Use the given table to find the indicated probability.

60) College students were given three choices of pizza toppings and asked to choose one favorite. The following table shows the results.

<table>
<thead>
<tr>
<th>Toppings</th>
<th>Freshman</th>
<th>Sophomore</th>
<th>Junior</th>
<th>Senior</th>
<th>Totals</th>
</tr>
</thead>
<tbody>
<tr>
<td>Cheese</td>
<td>12</td>
<td>12</td>
<td>28</td>
<td>29</td>
<td>81</td>
</tr>
<tr>
<td>Meat</td>
<td>23</td>
<td>29</td>
<td>12</td>
<td>12</td>
<td>76</td>
</tr>
<tr>
<td>Veggie</td>
<td>12</td>
<td>12</td>
<td>23</td>
<td>29</td>
<td>76</td>
</tr>
</tbody>
</table>

A student is selected at random. Find the probability that the student's favorite topping is meat given that the student is a junior.

A) 0.307 B) 0.158 C) 0.052 D) 0.190

61) College students were given three choices of pizza toppings and asked to choose one favorite. The following table shows the results.

<table>
<thead>
<tr>
<th>Toppings</th>
<th>Freshman</th>
<th>Sophomore</th>
<th>Junior</th>
<th>Senior</th>
<th>Totals</th>
</tr>
</thead>
<tbody>
<tr>
<td>Cheese</td>
<td>10</td>
<td>10</td>
<td>29</td>
<td>20</td>
<td>69</td>
</tr>
<tr>
<td>Meat</td>
<td>19</td>
<td>20</td>
<td>10</td>
<td>10</td>
<td>59</td>
</tr>
<tr>
<td>Veggie</td>
<td>10</td>
<td>10</td>
<td>19</td>
<td>20</td>
<td>59</td>
</tr>
</tbody>
</table>

A student is selected at random. Find the probability that the student's favorite topping is veggie given that the student is a junior or senior.

A) 0.661 B) 0.328 C) 0.361 D) 0.209

62) People in a survey were given three choices of soft drinks and asked to choose one favorite. The following table shows the results.

<table>
<thead>
<tr>
<th></th>
<th>cola</th>
<th>root beer</th>
<th>lemon-lime</th>
<th>totals</th>
</tr>
</thead>
<tbody>
<tr>
<td>under 21 years of age</td>
<td>40</td>
<td>25</td>
<td>20</td>
<td>85</td>
</tr>
<tr>
<td>between 21 and 40</td>
<td>35</td>
<td>20</td>
<td>30</td>
<td>85</td>
</tr>
<tr>
<td>over 40 years of age</td>
<td>20</td>
<td>30</td>
<td>35</td>
<td>85</td>
</tr>
</tbody>
</table>

One of the participants is selected at random. Find the probability that the person is over 40 and prefers cola.

A) \(\frac{4}{51} \) B) \(\frac{4}{17} \) C) \(\frac{4}{19} \) D) none of the above
63) People in a survey were given three choices of soft drinks and asked to choose one favorite. The following table shows the results.

<table>
<thead>
<tr>
<th></th>
<th>cola</th>
<th>root beer</th>
<th>lemon-lime</th>
<th>totals</th>
</tr>
</thead>
<tbody>
<tr>
<td>under 21 years of age</td>
<td>40</td>
<td>25</td>
<td>20</td>
<td>85</td>
</tr>
<tr>
<td>between 21 and 40</td>
<td>35</td>
<td>20</td>
<td>30</td>
<td>85</td>
</tr>
<tr>
<td>over 40 years of age</td>
<td>20</td>
<td>30</td>
<td>35</td>
<td>85</td>
</tr>
</tbody>
</table>

One of the participants is selected at random. Find the probability that the person is over 40 given that they prefer root beer.

A) \(\frac{2}{17} \)
B) \(\frac{5}{17} \)
C) \(\frac{2}{5} \)
D) \(\frac{6}{17} \)

Solve the problem.

64) Let the supply and demand functions for a certain model of electric pencil sharpener be given by

\[q = S(p) = \frac{3}{2}p \]
\[q = D(p) = 24 - \frac{3}{2}p \]

Where \(p \) is the price in dollars and \(q \) is the quantity of pencil sharpeners (in hundreds), find the equilibrium quantity and the equilibrium price.

A) Equilibrium quantity: 640
 Equilibrium price: $9.60
B) Equilibrium quantity: 960
 Equilibrium price: $6.40
C) Equilibrium quantity: 950
 Equilibrium price: $7
D) Equilibrium quantity: 1200
 Equilibrium price: $8

SHORT ANSWER. Write the word or phrase that best completes each statement or answers the question.

65) (This question type will be multiple choice on the final exam)

Duffin House is planning its annual Song Festival when it will serve three kinds of delicacies: granola treets, nutty granola treets, and nuttiest granola treets. The following table shows the ingredients required (in ounces) for a single serving of each delicacy. as well as the total amount of each ingredient available:

<table>
<thead>
<tr>
<th></th>
<th>Granola</th>
<th>Nutty Granola</th>
<th>Nuttiest Granola</th>
<th>Total Available</th>
</tr>
</thead>
<tbody>
<tr>
<td>Toasted Oats</td>
<td>8</td>
<td>6</td>
<td>4</td>
<td>3,600</td>
</tr>
<tr>
<td>Raisins</td>
<td>4</td>
<td>4</td>
<td>2</td>
<td>2,000</td>
</tr>
<tr>
<td>Almonds</td>
<td>0</td>
<td>2</td>
<td>4</td>
<td>2,400</td>
</tr>
</tbody>
</table>

The Song Festival planners at Duffin House would like to use up ALL the ingredients. How many servings of each kind of delicacy can they make?
Jeremiah Calhoun’s 36-gallon tropical fish tank contains three types of carnivorous creatures (baby sharks, piranhas, and squids) and he feeds them three types of food: goldfish, angelfish, and butterfly fish. Each baby shark can eat 1 goldfish, 2 angelfish, and 2 butterfly fish; each piranha can eat 1 goldfish and 3 butterfly fish per day; while each squid can eat 1 goldfish and 1 angelfish per day. Billy-Sean will feed 21 goldfish, 21 angelfish, and 35 butterflyfish to satisfy all the creatures. How many baby sharks, piranhas, and squids are in the tank?