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In this article, we study the construction of piecewise linear prewavelets over type-2 triangula-
tions. Different from a so-called semi-prewavelet approach, we investigate the orthogonal
conditions directly and obtain parameterized prewavelets with a smaller support. The
conditions for parameterized prewavelet basis on the parameters are also given.
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1. Introduction

While the construction of univariate wavelets is well understood (see [1] and [2] for
example), however, most of real world applications are multivariate or multiparameter
in nature. The construction of multivariate wavelets are much more challenging. In fact,
even the case of continuous piecewise linear wavelets construction is unexpectedly
complicated, see [7] and references therein. Here, for higher degree splines, we only
mention that a hierarchical basis for C1 cubic bivariate splines over quadrangulations
is used for surface compression in [9] very recently.

Because of the simplicity in computing with the linear splines, the piecewise linear
element becomes one of the most important and useful elements in solving boundary
value problems. In the literature on the finite element solutions of differential and
integral equations, bases of piecewise linear prewavelets with small support have
been constructed in [3–6,11–15]. In [8], a characterization of minimum support
piecewise linear prewavelets with 10 non-zero coefficients in the mask is given on

*Corresponding author. Email: caojiansheng@yahoo.com

Applicable Analysis ISSN 0003-6811 print/ISSN 1563-504X online � 2007 Taylor & Francis

http://www.tandf.co.uk/journals

DOI: 10.1080/00036810601109200



a bounded domain with a type-1 triangulation. A construction of wavelets over
arbitrary triangulations is presented in [15] and the prewavelets have 23 non-zero
coefficients in the mask. The construction is also applicable in higher dimensions.
In [3], a construction of piecewise linear prewavelets over a general triangulation
of a bounded domain was studied under an unusual requirement that the degree
of vertices of the triangulation must be at most 21. Later, the same authors pre-
sented a so-called semi-prewavelet skill in [4] and constructed piecewise linear prewa-
velets particularly on a bounded type-1 triangulation with 13 non-zero coefficients in
the mask. The restriction on the degree of vertices over an arbitrary triangulation is
removed by applying the semi-wavelet approach and using a property of the positive
definite matrices in [5]. Piecewise linear prewavelets over a type-2 triangulation
are constructed in [6] with 13 non-zero coefficients in the mask associated with
the interior vertices over a bounded domain by using semi-prewavelet approach.
In [10], all the possible semi-prewavelets over uniform refinements of a regular
triangulation are constructed, and a corresponding theorem is given to ensure the
linear independence of a set of different pre-wavelets obtained by summing pairs
of these semi-prewavelets.
In this article, we construct piecewise linear prewavelets over a bounded domain with a
type-2 triangulation by investigating the orthogonal conditions directly and obtain
parameterized prewavelets and it turns out that the prewavelets constructed in [6]
become a special set of wavelets obtained by assigning a specific value for the parameter
of the parameterized prewavelets. In particular, we obtain a smaller support for the
second kind of interior prewavelets with only 11 non-zero coefficients in the mask.
We also provide conditions on the parameters to ensure that these prewavelets
become a basis. Since there are so many different kinds of cases for basis consideration
for a type-2 triangulation, it becomes very complicated to obtain a similar characteristic
result of [8] as on a type-1 triangulation. The article is organized as follows.
Preliminaries are introduced in section 2. In section 3, we construct the smaller support
prewavelets associated with an interior vertex and a boundary vertex, respectively.
In section 4, parameterized prewavelets are constructed and conditions on the param-
eters for a basis are provided.

2. Preliminaries

Let � ¼ ½0,m� � ½0, n� be a rectangle. For x ¼ i, i ¼ 0, 1, . . . ,m and y ¼ j, j ¼ 0, . . . , n,
� is divided into mn small rectangles �ij ¼ ½i, iþ 1� � ½ j, jþ 1�, i ¼ 0, 1, . . . ,m� 1,
j ¼ 0, 1, . . . , n� 1, by mesh lines x¼ i and y¼ j. The triangulation generated by drawing
all northeast and northwest diagonals in all small rectangles is called a type-2 triangula-
tion and is denoted by �0 ¼ 4ð2Þ

mn, see figure 1. We will assume, for the sake of simpli-
city, that m� 2 and n� 2, though wavelet constructions can be made in a similar way
when either m¼ 1 or n¼ 1 (or both). We let V 0 and E 0 denote the vertices and edges,
respectively, in � 0, so that

V 0 ¼ fði, jÞ; 0 � i � m, 0 � j � ng [ iþ
1

2
, jþ

1

2

� �
; 0 � i � m� 1, 0 � j � n� 1

� �
:
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Let S 0 ¼ S 0
1 ð�

0Þ be the linear space of continuous linear spline functions over � 0.
Then a basis for S 0 is given by the piecewise linear nodal functions � 0

v in S 0, for
v2V 0, satisfying � 0

v ðwÞ ¼ �vw, where �vw is the Kronecker delta function. The support
of �iþð1=2Þ, jþð1=2Þ is the square Sij, while the support of � 0

ij is the diamond enclosed by
the polygon with vertices ði� 1, jÞ, ði, j� 1Þ, ðiþ 1, jÞ, ði, jþ 1Þ, with a suitable truncation
if the point (i, j) lies on the boundary of the domain D ¼ ½0,m� � ½0, n�.

Next we consider the refined triangulation �1 of �0, again a type-2 triangulation,
formed by adding the mesh lines in the four directions halfway between each pair of
existing parallel lines, shown as in figure 2. We define V1, E1, the linear space S1,
and the basis �1u, for u2V1 accordingly. Then S0 is a subspace of S1 with a refinement
equation relating the coarse nodal function � 0

v to the fine ones �1v . In order to formulate
this equation we define

V 0
v ¼ w2V 0; w and v are neighbors in V 0

� �
,

and

V1
v ¼ u ¼

ðwþ vÞ

2
2V1; w2V 0

v

� �
:

Figure 2. A refinement of �0.

Figure 1. A type-2 triangulation.
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Then V 0
v is the set of neighbors of v and V1

v is the set of midpoints between v and its
coarse neighbors. For example when v is an interior vertex, there are two cases:

V1
iþð1=2Þ, jþð1=2Þ ¼ ðiþ x, jþ yÞ; x, y ¼

1

4
,
3

4

� �
,

and

V1
i, j ¼ ðiþ x, jþ yÞ; x ¼ 0, y ¼ �1=2, x ¼ �1=2, y ¼ 0, and x ¼ �1=4, y ¼ �1=4

� �
:

It is easily to see the following refinement equation

� 0
v ¼ �1v þ

1

2

X
u2V1

v

�1uðxÞ:

IfW0 denotes the orthogonal complement space of S 0 in S1, then S1 ¼ S 0 �W 0, here
the spaces S0 and S1 are equipped with the inner product

h f, gi ¼

Z
�

fðxÞgðxÞdx, f, g2L2ð�Þ:

Similarly, if we define the wavelet space Wj to be the orthogonal complement at every
refinement level j, that is

Sjþ1 ¼ Sj �W j,

then we obtain the decomposition

Sk ¼ S 0 �W 0 �W 1 � � � � �Wk�1,

for any k� 1.
The space Wj can be used to represent the parts of functions in Sjþ1 that cannot

be represented in the space Sj. We can call Wj the correcting space. Using j-step
corrections, we have

Sj ¼ Sj�1 �Wj�1 ¼ Sj�2 �Wj�2 �Wj�1 ¼ � � �

¼ S0 �W0 �W1 � � � � �Wj�1:

Suppose � ¼ f j, ‘g‘2L forms a basis of Wj. If � is an orthonormal basis of Wj, then
the elements  j, ‘ of � are called wavelets, otherwise, they are called prewavelets.

We would like to obtain a basis of functions with small support for the purpose of
conveniently representing the decomposition of a given function f jþ1 2Sjþ1 into its
two unique components f j 2Sj and g j 2Wj : f jþ1 ¼ f j � g j: Note that the basis
elements of any Wk can simply be obtained from the basis of W0 using dilations,
we can restrict our study only to W0.
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To construct a small support basis, we follow the idea presented in [3]. For a ‘new’
vertex u2V1nV0, we try to construct a non-trivial (prewavelet)  u 2W0 associated
with the vertex u, whose support is around u, i.e., it has the form

 uðxÞ ¼
X

w2VðuÞ

qw,u�
1
wðxÞ,

where VðuÞ	V1 is a small set of vertices of �1 which are near to u.
In [6], the authors introduced a so-called semi-(prewavelets) approach to seek

prewavelets for the space W0 in terms of sum pairs of elements �v1,u and �v2,u
(called semi-wavelets) of S1 which have small support and are close to being in
the wavelet space W0, in the sense that they are orthogonal to all but two of the
nodal functions in the coarse space, where u is the midpoint of the edge ½v1, v2�.
Depending on the locations of v1, either v1 ¼ ðiþ 1=2, jþ 1=2Þ or v1 ¼ ði, jÞ, there
are three interior semi-wavelets that generate two interior prewavelets  u in the
sense that v1 and v2 are both interior vertices of �0 up to rotation and symmetries.
Similarly, there are three edge prewavelets  u for which one of v1 and v2 is an
interior vertex while the other one lies on the boundary but not the corner. The
remaining two prewavelets are corner prewavelets. Requiring the prewavelets being
the sum pairs of semi-wavelets, it has been shown in [6] that those seven kinds of
prewavelets are uniquely determined. For the second kind of interior prewavelets,
there are 13 non-zero coefficients in the masks. We take the same structures of
V(u) described in [6] and try to construct prewavelets with fewer coefficients
in the masks by investigating the orthogonal conditions directly. It turns out that
we obtain parameterized prewavelets. For the second kind of interior prewavelets,
we have only 11 non-zero coefficients in the masks.

3. Construction of smaller support prewavelets

In the following, we study the second kind of interior prewavelet with a smaller support
based on the same structure of the second interior prewavelet constructed in [6]. The
support vertices are labeled (1, 2, 3, . . . , 12) and some vertices in V0 are also labeled
(P1,P2, . . . ,P8) as shown in figure 3.

Let us assume that the prewavelet at u in W0 has the following expression:

 0
u ¼ b1�

1
1 þ a�1u þ b4�

1
4 þ b5�

1
5 þ b6�

1
6 þ b7�

1
7 þ b8�

1
8 þ b9�

1
9 þ b10�

1
10 þ b11�

1
11 þ b12�

1
12,

where �1i , i ¼ u, 1, . . . , 12 are nodal basis functions in S1. By the orthogonal conditions,
h 0

u ,�
0
Pi
i ¼ 0, i ¼ 1, . . . , 8 and h 0

u ,�
0
1 i ¼ 0, h 0

u ,�
0
10i ¼ 0, we will obtain the following

linear equations:

M1x1 ¼ 0, ð3:1Þ
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where

M1 ¼

24 8 8 12 8 12 8 1 3 0 1

1 1 0 0 0 0 1 8 3 1 0

1 6 0 0 0 0 0 6 20 6 6

1 1 1 0 0 0 0 0 3 1 8

1 0 6 4 0 0 0 0 0 0 0

1 0 1 12 1 0 0 0 0 0 0

1 0 0 4 6 4 0 0 0 0 0

1 0 0 0 1 12 1 0 0 0 0

1 0 0 0 0 4 6 0 0 0 0

0 0 0 0 0 0 0 1 3 8 1

2
6666666666666666664

3
7777777777777777775

,

and x1 ¼ ½b1, a, b4, b5, b6, b7, b8, b9, b10, b11, b12�
T:

We solve the matrix equation (3.1) and obtain the following solutions

b1 ¼ �15t1, a ¼
253

6
t1, b4 ¼

11

6
t1, b5 ¼ t1, b6 ¼

7

6
t1, b7 ¼ t1

b8 ¼
11

6
t1, b9 ¼ t1, b10 ¼ �14t1, b11 ¼ 5t1, b12 ¼ t1

where t1 is a non-zero arbitrary real number.
Notice that the second smaller support interior prewavelet only needs 11 points of

support, but second interior prewavelet in [6] needs 13 points of support.

Figure 3. The second smaller support interior prewavelet.
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Next, we work on the second boundary prewavelet. Support vertices are labeled
in the following figure 4 and Pi i ¼ 1, . . . , 6 are labeled for the coarse vertices. This
wavelet is called the second smaller support boundary prewavelet.

Let  0
u be the prewavelet function in W 0 at u which has the following expression:

 0
u ¼ a�1u þ b1�

1
1 þ b2�

1
2 þ b3�

1
3 þ b4�

1
4 þ b5�

1
5 þ b6�

1
6 þ b7�

1
7,

where �1i , i ¼ u, 1, . . . , 7 are nodal basis functions in S1. By the orthogonal conditions,
the following inner products must be zeros,

 0
u ,�

0
1

� �
¼ 0,  0

u ,�
0
pi

D E
¼ 0, i ¼ 1, . . . , 5,  0

u ,�
0
6

� �
¼ 0:

By the orthogonal conditions and directly computation, we obtain the following linear
equation:

M2x2 ¼ 0, ð3:2Þ

where

M2 ¼

8 12 6 12 8 6 3 0

1
1

2
6 0 0 0 3 1

0 0 0 0 0 0 3 8

1 1 0 12 1 0 3 1

0 1 0 4 6 4 0 0

0
1

2
0 0 1 6 0 0

6 1 4 4 0 0 20 6

2
666666666666666664

3
777777777777777775

,

Figure 4. The second smaller support boundary prewavelet.
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and x2 ¼ ½a, b1, b2, b3, b4, b5, b6, b7�
T. Solving the equation (3.2), we obtain the following

solutions:

x2 ¼
1

2

204

5
t2,�

144

5
t2,

6

5
t2,

8

5
t2,

12

5
t2, 2t2,�

64

5
t2,

24

5
t2

	 
T
,

where t2 is a non-zero arbitrary real number.
Note that the second smaller support boundary prewavelet only needs 8 points of

support but second boundary prewavelet in [6] needs 9 points of support. The prewave-
lets we obtained here are not unique. They are determined by the choices of values of
the parameter t2.

Due to symmetry of type-2 triangulations, the prewavelets with the same structures
as these two prewavelets can be obtained by rotations. In the next section, we will
construct edge prewavelets and also provide conditions for these prewavelets becoming
a basis.

4. Parameterized prewavelet basis

In the following, we will construct the parameterized wavelet basis over type-2
triangulations. The two smaller support wavelets are discussed in section 3. (See the
figures 3 and 4.) Since there are parameters in these two wavelets, we call these
prewavelets parameterized prewavelet-1 and parameterized prewavelet-2, respectively
as shown in figures 5 and 6.

Figure 5. Parameterized prewavelet-1.
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As we mentioned in section 2, there are seven kinds of prewavelets. We will construct
the other five parameterized prewavelets directly and provide a theorem to ensure that
these prewavelets form a basis.

Label the vertices as shown in figure 7. Let  u be the prewavelet in W 0 at vertex u
with the following expression:

 u ¼ a�1u þ b1�
1
1 þ b2�

1
2 þ b3�

1
3 þ b4�

1
4 þ b5�

1
5 þ b6�

1
6 þ b7�

1
7 þ b8�

1
8 þ b9�

1
9

þ b10�
1
10 þ b11�

1
11 þ b12�

1
12 þ b13�

1
13 þ b14�

1
14 þ b15�

1
15 þ b16�

1
16:

Here a and bi i ¼ 1, . . . , 16 will be determined by using the orthogonality conditions.
By using the orthogonal conditions h u,�

0
Pi
i ¼ 0, i ¼ 1, . . . , 12 and h u,�

0
1 i ¼ 0,

h u,�
0
13i ¼ 0, we obtain the following equation:

M3x3 ¼ 0, ð4:1Þ

where

M3 ¼

4 1 6 4 0 0 0 0 0 0 0 0 0 1 0 4 6

0 1 1 12 1 0 0 0 0 0 0 0 0 0 0 0 0

0 1 0 4 6 4 0 0 0 0 0 0 0 0 0 0 0

0 1 0 0 1 12 1 0 0 0 0 0 0 0 0 0 0

0 1 0 0 0 4 6 4 0 0 0 0 0 0 0 0 0

0 1 0 0 0 0 1 12 1 0 0 0 0 0 0 0 0

4 1 0 0 0 0 0 4 6 6 4 0 0 1 0 0 0

0 0 0 0 0 0 0 0 0 1 12 1 0 1 0 0 0

0 0 0 0 0 0 0 0 0 0 4 6 4 1 0 0 0

0 0 0 0 0 0 0 0 0 0 0 1 12 1 1 0 0

0 0 0 0 0 0 0 0 0 0 0 0 4 1 6 4 0

0 0 0 0 0 0 0 0 0 0 0 0 0 1 1 12 1

12 24 8 12 8 12 8 12 8 1 0 0 0 1 0 0 1

12 1 1 0 0 0 0 0 1 8 12 8 12 24 8 12 8

2
66666666666666666666666666664

3
77777777777777777777777777775

Figure 6. Parameterized prewavelet-2.
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and x3 ¼ ½a, b1, . . . , b16�
T.

We solve the equation (4.1) by letting b14 ¼ 0, b11 ¼ 0, b6 ¼ 0, and b4 ¼ 0 and obtain
the following solutions

x3 ¼ 38t3,�12t3,�12t3,2t3,0, t3,0,2t3,�12t3,�12t3,2t3,0, t3,�12t3,0,2t3,�12t3½ �
T,

where t3 is an arbitrary non-zero real number. This prewavelet is called the parameter-
ized prewavelet-3.

In a similar way, we label the support vertices and compute the coefficients over the
figure 8 for the parameterized prewavelet-4.

First, we assume that the prewavelet at vertex u has the following expression:

 u ¼ a�1u þ b1�
1
1 þ b2�

1
2 þ b3�

1
3 þ b4�

1
4 þ b5�

1
5 þ b6�

1
6 þ b7�

1
7 þ b8�

1
8 þ b9�

1
9 þ b10�

1
10:

Applying the orthogonality conditions, we can obtain the system of homogenous
linear equations:

M4x4 ¼ 0,

Figure 8. Parameterized prewavelet-4.

Figure 7. Parameterized prewavelet-3.
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where

M4 ¼

6 12 8 12 8 6
1

2
0 0 0 1

6
1

2
1 0 0 0 12 6 8 12 8

0 0 0 0 0 0
1

2
6 1 0 0

0 0 0 0 0 0 1 4 8 4 0

0 0 0 0 0 0 1 0 1 12 1

4 1 6 4 0 0 1 0 0 4 6

0 1 1 12 1 0 0 0 0 0 0

0 1 0 4 6 4 0 0 0 0 0

0
1

2
0 0 1 6 0 0 0 0 0

2
66666666666666666666664

3
77777777777777777777775

,

and x4 ¼ ½a, b1, b2, b3, b4, b5, b6, b7, b8, b9, b10�
T.

Solving the linear equation M4x4 ¼ 0 by choosing b4 ¼ 0 and b8 ¼ 0, we obtain the
following.

x4 ¼ ½38t4,�12t4,�12t4, 2t4, 0, t4,�12t4, t4, 0, 2t4,�12t4�
T,

where t4 is an arbitrary non-zero real number.
Now, we consider the boundary prewavelet at u as shown in the figure 9 and it has the

expression:

 u ¼ a�1u þ b1�
1
1 þ b2�

1
2 þ b3�

1
3 þ b4�

1
4 þ b5�

1
5 þ b6�

1
6 þ b7�

1
7 þ b8�

1
8 þ b9�

1
9

þ b10�
1
10 þ b11�

1
11 þ b12�

1
12 þ b13�

1
13:

Figure 9. Parameterized prewavelet-5.
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By the orthogonality conditions, we obtain the following linear equation:

M5x5 ¼ 0

with the coefficient matrix

M5 ¼

12 1 0 1 1 0 24 12 8 12 8 12 8 8

12 12 6 8 8 6 1 0 0 0 0 0 1 1

0
1

2
6 1 0 0 0 0 0 0 0 0 0 0

4 1 4 6 0 0 1 4 0 0 0 0 6 0

0 0 0 0 0 0 1 12 1 0 0 0 1 0

0 0 0 0 0 0 1 4 6 4 0 0 0 0

0 0 0 0 0 0 1 0 1 12 1 0 0 0

0 0 0 0 0 0 1 0 0 4 6 4 0 0

0 0 0 0 0 0 1 0 0 0 1 12 1 0

4 1 0 0 6 4 1 0 0 0 0 4 6 0

0
1

2
0 0 1 6 0 0 0 0 0 0 0 0

2
666666666666666666666664

3
777777777777777777777775

,

and the vector

x5 ¼ ½a, b1, b2, b3, b4, b5, b6, b7, b8, b9, b10, b11, b12, b13�
T:

we obtain the following for b10 ¼ 0 and b8 ¼ 0:

x5 ¼ ½39t5,�24t5, 4t5,�12t5,�12t5, 4t5, �12t5, 2t5, 0, t5, 0, 2t5,�12t5,�12t5�
T

with t5 6¼ 0, an arbitrary non-zero real number. We call this prewavelet the parameter-
ized prewavelet-5.

To construct parameterized prewavelet-6, we label the vertices as shown in the
figure 10.

Figure 10. Parameterized wavelet-6.
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Let  u 2W0 be the prewavelet on the vertex u and suppose it has the following
expression:

 u ¼ a�1u þ b1�
1
1 þ b2�

1
2 þ b3�

1
3 þ b4�

1
4 þ b5�

1
5 þ b6�

1
6 þ b7�

1
7 þ b8�

1
8:

By the orthogonality conditions, we obtain the linear equation for b7 ¼ 0:

M6x6 ¼ 0,

where

M6 ¼

6 6 8 6
1

2
1 0 0

6
1

2
1 0 12 8 6 12

0 0 0 0
1

2
0 6 0

0 0 0 0 1 0 4 4

0 0 0 0 1 1 0 12

4 1 6 4 1 6 0 4

0
1

2
1 6 0 0 0 0

2
66666666666666666666664

3
77777777777777777777775

and x6 ¼ ½a, b1, b2, b3, b4, b5, b6, b8�
T:

Solving the linear equation M6x6 ¼ 0, we obtain

x6 ¼ ½39t6,�24t6,�12t6, 4t6,�12t6,�12t6, t6, 2t6�
T,

where t6 is an arbitrary non-zero real number.
Finally, let us consider the seventh kind of prewavelets, the parameterized prewave-

lets with its support and vertices as shown in the figure 11.
Let  u be the wavelet on vertex u in the parameterized prewavelet-7 and suppose it

has the expression:

 u ¼ a�1u þ b1�
1
1 þ b2�

1
2 þ b3�

1
3 þ b4�

1
4 þ b5�

1
5 þ b6�

1
6 þ b7�7:

By the orthogonality conditions and letting b2 ¼ 0 and b3 ¼ 0, we obtain linear
equation

M7x7 ¼ 0,
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where

M7 ¼

6 1 6 20 6 6

8 6 1 3 0 1

1
1

2
8 3 1 0

0 0 1 3 8 1

1
1

2
0 3 1 8

2
666666664

3
777777775

and

x7 ¼ ½a, b1, b4, b5, b6, b7�
T:

Solving the linear equation M7x7 ¼ 0, we obtain

x7 ¼ ½20t7,�24t7, t7,�6t7, 2t7, t7�
T,

where t7 is an arbitrary non-zero real number.
Due to the symmetry of the type-2 triangulations, any prewavelet functions on

the new vertex in u2V1nV 0 can be obtained by the rotations through the above
seven parameterized prewavelets. So we can obtain all prewavelet functions
in W0. In particular, for t3 ¼ 2, t4 ¼ 2, t5 ¼ 2, t6 ¼ 4, and t7 ¼ 4, the above five
prewavelets can be transformed into the first interior prewavelet, the first boundary
prewavelet, the third boundary prewavelet, the first corner prewavelet, and the
second corner prewavelet in [6]. The other two parameterized prewavelets have
smaller support than the ones in [6] and they are not unique but depending on
the parameters ti, i ¼ 1, 2.

Figure 11. Parameterized prewavelet-7.
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In the following, we will give sufficient conditions of these parameters ti, i ¼ 1, . . . , 7
to ensure that these parameterized prewavelets can form a basis of W0.

THEOREM 1 For the seven kinds of parameterized prewavelets-i, i ¼ 1, . . . , 7
constructed above, if ti, i ¼ 1, . . . , 7 in the parameterized prewavelets satisfy the following
conditions,

144

149
jt3j < jt1j < minf7jt3j, 5jt7j � 6jt6jg

5

96

41

6
jt1j þ 12jt4j þ 12jt5j

� �
< jt2j < min

5

8
ð18jt4j � 4jt5j

� �
,

5

8
39jt5j � 4jt4j � 5jt3j � 2jt1j,

1

2
ð35jt6j � 4jt5j � 5jt4jÞ

� �

where ti 6¼ 0, then these parameterized prewavelets become a basis of W0.

Proof Let Q ¼ ð�1uðvÞÞv2V1nV 0 be the matrix evaluated at u by every parameterized
prewavelet. Figure 12 shows the non-zero values of the row in matrix Q corresponding
to the prewavelet-3. We can see that the row vector correspondingly in the matrix Q is

½0, 0, . . . , 0, t3, t1, 2t3, 0, t1, 2t3, 0, 38t3, 0, 2t3, t1, t3, t1, 2t3, 0, 0 . . . , 0�

and the entry 38t3 is the diagonal element of the row in the matrix Q.
In a similar way, we can draw figures and write down all rows associated with the

rest of prewavelets in the matrix Q. We can verify that if the ti, i ¼ 1, . . . , 7 satisfy the
above conditions, then matrix Q is a diagonal dominant matrix, and therefore, Q is
non-singular. Hence, these parameterized prewavelets can form a basis for the wavelet
space W0 .

Figure 12. Dominant elements in the parameterized wavelets matrix Q.
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As an example, t1 ¼ 1, t2 ¼ 2, t3 ¼ 1, t4 ¼ 1, t5 ¼ 1, t6 ¼ 1, t7 ¼ 2 gives one solution
satisfying the conditions in the theorem. g

References

[1] Chui, C.K., 1992, An Introduction to Wavelets (Boston: Academic Press).
[2] Daubechies, I., 1992, Ten Lectures on Wavelets (Philadephia: Society for Industrial and Applied

Mathematics).
[3] Floater, M.S. and Quak, E.G., 1999, Piecewise linear prewavelets on arbitrary triangulations. Numerische

Mathematik, 82, 221–252.
[4] Floater, M.S. and Quak, E.G., 1998, A semi-prewavelet approach to piecewise linear prewavelets on

triangulations. In: C.K. Chui and L.L. Schumaker (Eds), Approximation Theory IX, Vol 2:
Computational Aspects (Nashville: Vanderbilt University Press), pp. 60–73.

[5] Floater, M.S. and Quak, E.G., 2000, Linear independence and stability of piecewise linear prewavelets on
arbitrary triangulations. SIAM Journal on Numerical Analysis, 38, 58–79.

[6] Floater, M.S. and Quak, E.G., 2001, Piecewise linear wavelets over type-2 triangulations. Computing
Supplement, 14, 89–103.

[7] Hardin, D. and Hong, D., 2003, On piecewise linear wavelets and prewavelets over triangulations.
Journal of Computational and Applied Mathematics, 155, 91–109.

[8] Hong, D. and Mu, Y.C., 2000, On construction of minimum supported piecewise linear prewavelets
over triangulations. In: T.X. He (Ed.), Wavelets and Multiresolution Methods (New York: Marcel
Decker Pub.), pp. 181–201.

[9] Hong, D. and Schumaker, L.L., 2004, Surface compression using hierarchical bases for bivariate C1 cubic
splines. Journal of Computing, 72, 79–92.

[10] Hong, D. and Xue, Q.B., 2006, On the construction of linear prewavelets over a regular triangulation.
Journal of Concrete and Applicable Mathematics, 4, 451–471.

[11] Kotyczka, U. and Oswald, P., 1995, Piecewise linear prewavelets of small support. In: C.K. Chui and
L.L. Schumaker (Eds), Approximation Theory VIII, Vol. 2 (Singapore: World Scientific), pp. 235–242.

[12] Lounsbery, M., DeRose, T. and Warren, J., 1997, Multiresolution analysis for surfaces of arbitrary
topological type. ACM Transactions on Graphics, 16, 34–73.

[13] Oswald, P., 1994, Multilevel Finite Element Approximation: Theory and Applications (Teubner, Stuttgart:
Teubner Skripte zur Numerik).

[14] Riemenschneider, S. and Zuowei Shen, 1992, Wavelets and prewavelets in low dimension. Journal of
Approximation Theory, 71, 18–38.

[15] Stevenson, R., 1997, Piecewise linear (Pre-)wavelets on non-uniform meshes, Report No. 9701, Dept. of
Mathematics, University of Nijmegen.

98 J. Cao and D. Hong


