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STABILITY OF OPTIMAL-ORDER APPROXIMATION
BY BIVARIATE SPLINES OVER ARBITRARY TRIANGULATIONS

C. K. CHUI, D. HONG, AND R. Q. JIA

ABSTRACT. Let A be a triangulation of some polygonal domain in R? and
Si(A), the space of all bivariate C” piecewise polynomials of total degree
< k on A. In this paper, we construct a local basis of some subspace of the
space S7(A), where k > 3r + 2, that can be used to provide the highest order
of approximation, with the property that the approximation constant of this
order is independent of the geometry of A with the exception of the smallest
angle in the partition. This result is obtained by means of a careful choice of
locally supported basis functions which, however, require a very technical proof
to justify their stability in optimal-order approximation. A new formulation
of smoothness conditions for piecewise polynomials in terms of their B-net
representations is derived for this purpose.

1. INTRODUCTION

The objective of this paper is to describe the approximation properties of
certain bivariate spline spaces over arbitrary triangulations of a polygonal do-
main in R? and to construct the approximants that achieve the highest order
of approximation. Let A be a 2-dimensional simplicial complex [9, p. 131].
We assume throughout that A is pure; that is, each maximal simplex has di-
mension 2. Then A is called a triangulation of a polygonal region in R?. As
usual, for any nonnegative integers k and r, S;(A) denotes the space of all C”
functions which are piecewise polynomials of total degree at most k separated
by A. The approximation order of the space S} (A) is defined to be the largest
integer p for which

(1) dist(f, S;(4)) < C |A)

holds for all sufficiently smooth functions f, where the smallest constant C,
called the approximation constant (of optimal-order), depends only on f and
the smallest angle in A. Also |A| := sup,c, diam 7 denotes the mesh size
of A, and the distance is measured in the supremum norm || ||. It is clear
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that the approximation order of S} (A) cannot be higher than k + 1, regardless
of r, and is trivially £ + 1 in case r = 0. On the other hand, it is also
well known that for r > 1 the approximation order from Sj(A) not only
depends on k& and r, but also on the geometric structure of the partition A.
According to the well-known results in finite element theory (cf. [11]), the
full approximation order of k + 1 is obtained provided that & > 4r + 1.
Extension of this property of optimal approximation to k > 3r + 2 is more
recent. An abstract proof based on the Hahn-Banach theorem was given by
de Boor and Hollig [2]. However, as was already pointed out by de Boor [1]
(see also Schumaker [10, p. 547]), the proof given in [2] does not fully support
the claim that the approximation constant in (1) depends only on the smallest
angle in the triangulation. Although constructive proofs were also given in [5]
and [6], yet the behavior of the approximation constants still depends on the
measurement of “near-singularity” of A; i.e., the constant becomes large for
near-singular vertices. Observe that when A is refined so that |[A] — 0 in
(1), the standard refinement algorithms are mainly concerned with the smallest
angle in the partitions, but not with the “near-singularity” of such refinement.
Therefore, it is important to give an approximation scheme in order to show
that the spline space S;(A), k > 3r + 2, admits optimal approximation order
of k'+ 1 in such a way that the approximation constant C in (1) does not
depend on the geometry (such as near-singularity), with the exception of the
smallest angle in A.

The main purpose of this paper is to construct a stable local basis of the super
spline subspace S;'“(A) of S (A), where k > 3r+2 and pu = || (see[4, p.
73] and [10]), and to show that the full order of approximation can be achieved
via a quasi-interpolation scheme using this basis, and that the approximation
constant C in (1) of this optimal order depends only on the smallest angle
in the triangulation A. Unlike the techniques introduced in [2] (see also [1]),
which are based on determining the smoothness conditions in terms of the
domain points on two triangles that share a common edge to “disentangle the
rings” of smoothness conditions, our approach is to inductively determine the
smoothness conditions on the rings of the domain points of all vertices; that
is, we determine the smoothness conditions in terms of the points on all of the
triangles attached to a common vertex.

This paper is organized as follows. In Section 2, in order to facilitate our
procedure of constructing a stable super spline basis, we give a new formulation
of the smoothness conditions in terms of the B-net representations. In Sec-
tion 3, we demonstrate how to choose a minimum determining set and provide
an explicit scheme of approximation from S;’#(A) that attains the optimal ap-
proximation order. Finally, in Section 4, we will give an explicit scheme for
constructing some stable local basis of S;*#(A).

2. PRELIMINARIES

Throughout this paper, we will always assume, without loss of generality, that
A is connected. For a vertex v of A, we denote by St(v) the closed star of
vertex v in A [9, p. 135]; i.e., the cell formed by all the triangles in A with v
as a common vertex. If S7(v)\{v} is connected for every vertex v of A, then
A is called strongly connected. If A is strongly connected, then each boundary
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vertex has exactly two boundary edges attached to it. For simplicity, we will
always assume that A is strongly connected, though our discussion is also valid
otherwise.

Let 7 =[u, v, w] be a triangle with vertices #, v and w . For any x € R?,
denote by &(x) = (&, &, &u) the barycentric coordinates of x with respect to
7 ; that is,

x=éuu+'fvv+'fwwa 'fu+év+'fw=l~

For a = (ay, ay, ay) € Zi , the Bernstein-Bézier polynomial B, . is defined

” By o(x) = (Ial)éa" avgan

al!

where |a| = ay +ay + ay and (1) = wTaaot - Moreover, we define the points
Xq,r ON T tobe (ayu + ayv + ayw)/|ef. It is well-known that any p € 7y , the
space of all polynomials of total degree < k, can be written in a unique way as

D= Z ba,‘tBa,‘r-

lal=k

This gives rise to a mapping b: X, ; — b, ., |o| = k, and this mapping is
called the B-net representation of p with respect to 7.

Let X be the collection {X, :: T € A, |a| = k}. To any f € S)(A) there
corresponds a unique mapping by from X to R such that on each 7 € A,

fl‘t = Z bf(xa,t)Ba,t~

lal=k

This by is called the B-net representation of f with respect to A.

In our investigation, it is essential to represent C’-smoothness conditions
of spline functions in terms of B-net representations. Suppose that a spline
function f is defined over two triangles, say T =[u, v, w] and % = [u, v, W],
with a common edge [u, v]. Let S, S,, S, and S,, denote the oriented areas
of the triangles 7, [w, v, w], [u, W, w], and %, respectively. For instance,
if u is the origin of R, v = (vy, v3), w = (W, w;y) and W = (W, W,),
then

[am—

(2) S= '2'(”1“’2 — VW)
and

1, . . 1 . .
(3) Sy = §(w1w2 —Wawy), Sy = E('UIU)Z — vy).

The following lemma describes C’-smoothness conditions on a spline function
f in terms of its B-net representation (cf. [8]).

Lemma 1. Suppose that a function f is defined on tU% by
Sfle= Z b(xa,7)Ba,t;
|a|=k

flf = Z b(xa,‘?)Ba,i-

lal=k
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Then f € C'(tU?1) if and only if for all nonnegative integers ¢ < r and
P =(Pu> 70, 0) €Z2 with |y|=k—1,

@ b= Y b (5) (5" (2)" (S)"

|Bl=¢
where = (Bu, Bv, Buw) €23 and &> =(0,0,1).

We remark that the quantities S¢, S, and S¢ are all bounded by some
constant which depends only on the smallest angle in the partition A. Hence,
as we will see, the approximation constant for optimal-order approximaticon has
to depend on this smallest angle.

For later reference, we need another form of the smoothness conditions
which plays an important role to prove the stability of the local basis. For
a=(ay, ay, ay) €Z3 with |a| =k, let

ay Qg v y o
(5)  Cayei= ) Y (~N)nhrrenhe (/%) (ﬂw>b(x(k—ﬂv—ﬂw,ﬂu,ﬂw),f)'

Bv=0 Byy=0
Then we have the following result.

Lemma 2. A function s € S,?(r U1t) isin C" if and only if the corresponding
terms {Cy .} and {C, :} satisfy the conditions:

a aw SLSg !
(6) Ca,‘f=Zc(au,av+l,aw—[),1(£w)vTZ}w—’
£=0

for 1 < oy, < r where a=(au,av,aw)eZi with |a| =k.

Proof. Without loss of generality, we may assume that u is the origin of R?.
Let 1=[u,v,w], T=[u,v, W], and consider an s € S,?(‘c U 1) which agrees
with some pen, on 7 and peng on . For 0<m <k, let p,, and p,, be
the homogeneous components of degree m of p and p, respectively. Also, let
sm be the corresponding piecewise polynomial function which agrees with p,,
on 7 and p,, on %. Clearly, s, € S,?(ru ), m=0,1, ..., k. Moreover,
since we may assume that the mesh line [u, v] is on the x-axis, it is not difficult
to see that s isin C” if and only if each s,, isin C", m=0,1, ... , k. Note
that

p(x) = Z b(xu,r)(k

vyt <k

k!

— Uy — U)Wy lg!

(1 =& — &) ool dim,

where (1 —-¢&, — &, &, &) 1s the barycentric coordinate of x with respect to
the triangle 7 = [u, v, w]. By the multinomial theorem, we have

(1 =& — &)™
_ Z (k — Vy — l/w)!
= (K — vy — 1ty — 3y — 62)105100]

Oy +0u <k—vy—1y

_1)0+b0 g0, 20
(=D T & ey

Therefore, by setting J, + v, and J,, + v, to be «, and «, , respectively, we
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have

k!
p(x): Z Z b(x"’T)(k—av—aw)!au!aw!

aytay<k vy<oy
%) [Qw (_l)av—uu+aw—vwéauéaw
v w *
Uy Vw

vy LZay
Recall that u = (0, 0). So, writing v = (v, v2), w = (W, wy), and x =
(x1, x2), we see that

_arealu, X, w] _ Xjw; — Xow,
T areafu, v, w] viw; — Uw

<

and
_arealu, v, xX]  v1xp — X
areaf[u, v, w] viwy — VW

Sw

are homogeneous linear functions of x ; hence, we have

k!
pm(x)= 3. D bl iy

aytoy=m v,<ay
- Xy Qw (_l)av-l’v"'dw"’wéav Qy
v w *
Uy Vw

Vw <oy
Taking (5) into account, we deduce that

k! o Zow
(7 Pm(x)= > mca,rv w'-

aytay=m
Similarly, we have

k!

_Fay £y
(k — m)!av!aw!ca’révu W

(8) Pnx)= Y

oy oy =m

where (1 —¢&, — &y, &, , &) is the barycentric coordinate of x with respect to
[u,v, w]. N )

Let us now express &, and &, in terms of &, and ;. Suppose w =
(W, W7) . Then we have

:  X1Wy — X : UiXp—UxXy
v Ul’lflz - 'Uﬂf)[ ’ Ul’lf)z - Uz’lfll )

These two equalities together with (2) and (3) yield
— S’LU £
Sw = S &

and
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Finally, replacing &, by fu + %“5,1, and &, by %ﬂfw in (7), we obtain

k! : Suz \ (Swz \™
Pm(x) = Z mca,r (fu'f“s—fw) ('37‘51[;)

aytay=m

!

ol ay!
E Z (k—m 'av'aw'f'(av _g)vc

aytay=m (= 0

S ay—~ S aw~~a_ N
(5)7 (3) e
Let By =ay+ay —£, P, =£ and ¢ = a, — £ . Then we have a, = By — ¢,
and

k! quﬁw—q
pmx)= 3 ——Z( )qk ot Bt uma) DB
ﬂu+ﬂm=m( = m)!By! Ba!

Comparing this with the expression for p,,(x) in (8), we conclude that s,, € C”
if and only if :

B fo—a
ﬁ~ SqS W
Cpe=D, ( g ) Cbubra po-0).—gp—
q=0

for B = (Bu, v, Bu) € Z3 with 1 < By <r and B, + By = m. This completes
the proof of the lemma.

3. MAIN RESULTS

To investigate the approximation properties of bivariate spllre spaces, it is
convenient to introduce the notion of super splines. Given a trlangulatlon A
and nonnegative integers k,r and g with kK > u > r, a super spline is a
piecewise polynomial of degree at most £ on A which is C” across each edge
and C* around each vertex. Let S;’*(A) be the space of all such splines.
Then S;°#(A) is a subspace of S (A). In this section, we describe an explicit
quasi-interpolation scheme and prove that the super spline space S;"*(A), u =
|3 |, k > 3r+2, admits the optimal approximation order of k + 1 with the
approximation constant dependent only on the smallest angle in the partition
A.

Let us introduce a natural pairing

=Y Ax)b(x), A,beR¥,
xX€EX

on R¥ . Now choose and fix an orientation for each interior edge of A. Let e =
[u, v] be an oriented interior edge with two triangles [u, v, w] and [u, v, W]
attached to it. If the orientation of ¢ is from u to v, then we assume that
the points u#, v and w are ordered in the counterclockwise direction. In this
case, we say that the orientation of the triangle 7 agrees with the orientation
of the edge e. Let o = (ay, ay, ag) € Z2 with |a| =k and ay > 1. Bearing
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Lemma 1 in mind, we define a function 4, , on X as follows:

1, if x =Xx,,%;
_ (aw Sﬁusﬂu shw if x=x
9) ho )= { ~UDTS N
for B € Z3 with |B| = ay;
0, elsewhere.

The points x, . and x, ; will be called the tips of A, 4.

In the sequel, we always assume that k > 3r + 2 and consider u:= |3 ]|.
For a vertex u and an oriented interior edge e attached to u, we consider the
collections Aj , defined by

(10) Ay o={Aeatay=k—-n}, n=1,2,...,u,
and
(1 Ay oi={leat au=k—n; ay, ag <1}, n=pu+1,...,2r
Furthermore, let
(12) An=|JAL,, n=1,2,...,2r,
edu

2r
Ay = AL,
n=1

and for an oriented interior edge e, let

(13) Ae:={lea: | <ay <r<a,, ay <k-—u}
Finally, let
uev ecE

where V' and E denote the collections of vertices and oriented interior edges
of A, respectively. By Lemma 1, we see that f € S;°*(A) if and only if its
B-net representation by satisfies

(A, b)=0, A€A.

A subset Y of X is called a determining set for the super spline space
Sy *(A), if the linear mapping f — bys|y defined on S;#(A) is one-to-one.
Our goal is to find a minimum determining set for this super spline space.

An interior vertex u is said to be singular, if there are exactly four edges
attached to it and these edges lie on two straight lines. Otherwise, u is called
nonsingular. In particular, a boundary vertex is regarded as nonsingular.

For a vertex u and a triangle 7 = [u, v, w] attached to u, let

Xl;l,r::{xa’r: auzk——n}, n:O’l’.“"u;
(15) X3:=UX:II,‘E’ n:O’l’“','u.
DU

We associate with each vertex u a triangle 7 attached to u and define
(16) V) =X;.,, n=0,1,...,4
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FIGURE 1. The points “® ”in X ,, n=u+l,...,2r,
and X ,, n=u+1,and “x”in Y, for nonsingular
vertex u (k=26,r=8, u=12).

Let e be any oriented interior edge with a given u and some v as two of its
vertices. Also let 7 and 7 be the two triangles attached to e, such that the
orientation of 7 agrees with that of e; moreover, denote by w and w the
third vertices of 7 and 7, respectively. For n = u+1,---,2r,if u isa
nonsingular vertex, we define X , to be the union of the two sets

{Xa 3t ay=k—-n; n—r<ayzy<r}

and
{Xa, v au=k—-n; 2n-3r—-1<a, <r}

(see Figure 1). If u is a singular vertex and 7 = [u, v, w] is a triangle attached
to u, we define

X} ={Xa,siau=k—-n; n—r<ay,<r}, n=u+1,...,2r,
(see Figure 2). If e is an oriented edge attached to a singular vertex u, we set
X=X,  UX):, n=u+1,...,2r,
where 7 and 7 are the two triangles with common edge e ; also, set

Yy =X}

u,T

n=u+1,...,2r,

where 7 is an arbitrarily chosen triangle attached to u. For any vertex u,
singular or otherwise, we define

(17) xXp=UXxp,, n=p+1,...,2n

edu

Furthermore, we associate with each oriented interior edge e three sets
X: = {x(x,‘t: 0<ay<r<ay, ay <k—ﬂ},

X, ={xa1: 1 <ay <r<a,,o, <k-—pu},
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FIGURE 2. The pointsin X} ,, n=pu+1,...,2r, for
a singular vertex u (k=26,r=8, u=12).

and
2r
(18) Yo:=X \ J (X7 uX],).
n=pu+1
Finally, for each triangle 7, we define
Xei={Xo c:1ay, oy, ay >r}.
From the preceding construction we see that X is the disjoint union
2r
(U U X;') U (U(YeuX;)) U <U XT) ,
n=0uev ecE tel

where I denotes the collection of all triangles in A.

Suppose now that u is a nonsingular vertex. Then for each integer n between
u+1 and 2r, we choose a subset Z of X such that the cardinality #Z! of
Z! is equal to #A!, and

(19) | det(A(x))senn, xezr| > | det(A(x))zenr, xez|

for any subset Z of X with #Z = #A”. It is known that the matrix
(A(X))se AL xEX] has full (row) rank (see [2, Proposition 6] and [7]); hence

det(A(x))iear, xezr # 0,
and we will write
(20) Y i =X;\Z], n=u+1,...,2r
For each triangle 7 € A, we define
Y, = X;.
Finally, we set

2r
Y, =]y,
=0
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FIGURE 3. The classification of point set X on a trian-
gle.

and

(21) Y = (U Y,,)U(U Ye)U(U Y,).

veV ecE el
Then from the following theorem, we see that Y is a minimum determining
set for S.°#(A).

Theorem 1. For each b: Y — R, there exists a unique f € S;’*(A) such that
the B-net representation by of f satisfies

bely = b.

Proof. Let At := {b € R*: (A,b) =0, A € A}, where A is given by (14).
Then f € S;’#(A) if and only if by € At ; hence, it suffices to show that for a
given mapping b : Y — R, there exists a unique b € A% such that b|ly =b.

We shall first extend b to U, X for n=0,1,... ,u. Foreach ueV,
(16) tells us that Y = X . for n = 0,1,...,u, where 7 is a triangle
attached to u. On the other hand, there exists a polynomial p, € n; such that
its B-net representation b,, on A satisfies b, (x) = b(x) forall x € | J,_, Y.
We extend b to |J,,_, X by setting b(x) := b,,(x) for every x € |J,_o X1 .
Evidently, (A, b) =0 forall 1€ J,_, AZ.

Next, we extend b to U,y X for n = pu+1,...,2r. This is done in-
ductively on n as follows. Let n be given with u+ 1 < n < 2r. Suppose that

B(x) has been determined for x € U;:ol Uer X 7 in such a way that (4, 5) =0
forall A€ U;:]l User AJ,. We wish to determine the values of b on User X}
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such that for every ue ',
3 Ax)b(x) =0, AeAL

xeX

We claim that the value b(x) has been determined whenever x € X \ X and
A(x) # 0 for some A € A?. To establish this claim, we consider A = 4, o,
where e is an edge attached to u and a = (a4, @y, ay) With o, = k —n.
Without loss of generality, we assume that e = [u, v] is an oriented interior
edge and both of u and v are nonsingular, for otherwise the proof is analogous.
Let 7 =[u, v, w] and % = [u, v, W] be the two triangles with common edge
e. If A(x)#0 and x ¢ X, then x = xp . for some B e 73 with |B| =k,
E“ > ay, By > a,. Thus, we have B, = k — m for some m < n. Since
b(x) has been determined for x € U;:OI Uuey X, we may assume that x ¢
U;:ol Uyey Xit . It follows that u + 1 < m < 2r. By the definition of X", we

have B, < 2m—3r—1. Consequently, xz . ¢ X{ forany p > m. This shows
that

2r
Xp,t ¢ U (Xt?,eUXg,e)‘

n=p+1

By the definition of Y., we have x = xz ; € Y, and therefore b(x) = b(x) is
already determined. This verifies our claim.

Suppose now that u is a nonsingular vertex. Remember that X is the
disjoint union of Y and Z) and b(x) = b(x) for x € Y. Moreover,

det(&(x))leA:,xez&, #£0.

Thus, the values of b on Z! can be determined by solving the system

Y Axbx)=- ) Axb(x), A€A]

x€Z! x€EX\Z!

of linear equations.

It remains to deal with the case where u is a singular vertex. Suppose that
71, T2, 73 and 14 are the four triangles attached to u and arranged in a
consecutive way. We may assume that Y] = X/ ., n=u+1,...,2r. Let ¢;,
j=1,2,3,4, be the common edge of 7; and 7;;; with 75:=1;. We have

b(x) = b(x) for x € Y} = X! .. Note that the matrix (A(x)),cr,  cxr

u,ej “"j+l
is a nonsingular diagonal matrix if the A’s and the x’s are arranged in an
appropriate way. Thus, we can determine the values of » on Xi s J =

1,2, 3, by solving the system
Yo dxbx) == Y Axb(x), i€Al,

X€Xy o, XEX\X] ..
J+1 Jj+1

of linear equations. R
It is known (see, e.g., [7]) that the function b so obtained also satisfies

> Ax)b(x)=0 forall i€ A} ,,.
xeX
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Finally, we extend b to all the remaining points X ; i.e., to the points in
Uece Xo - This can be easily done by applying the smoothness conditions (4)
across each interior edge.

To summarize, we have constructed a function b on X such that be At
and bly = b. From this construction, we see that such a b is unique. Indeed,
if b=0 on Y and b € A+ satisfies b|y = b = 0, then b must vanish on all

of X . This completes the proof of the theorem.
Theorem 1 suggests the following Approximation Scheme.
Step 1. Given f € C(A) and a triangle 7 € A, find p, € m; such that
Di(Xa,7) = f(Xqa,:) forall o] = k.
Step 2. Let s € SY(A) be the spline function given by

N lr =Dz
for each triangle 7 € A. Then find the B-net representation b of s.

Step 3. Find b in accordance with Theorem 1, such that Bly = bly and be
At . Let g be thespline in S;’#(A) whose B-net representation b, agrees with

~

b on X.

We denote by T the linear operator f+— g, f € C(A).

In the sequel, we will denote by a the smallest angle in A, and by Const,
we mean a constant depending only on a and k , which may vary from situation
to situation. We use the notation D;, j =1, 2, to denote the partial derivative
operators with respect to the jth coordinates. Also, the closed star of v,

denoted by St(v) =: kY4 (v), is the union of all the triangles attached to v, and
the m-star of v, denoted by ﬁm(v) , is the union of all triangles that intersect

with S7" '), m> 1.
Lemma 3. The linear operator T satisfies the following conditions:

(i) Tp =p for every polynomial p € my, .
(i1) If 7 is a triangle attached to a vertex u, then

(22) (T N)lelloo < Consty x|l fInlloo s
r/2j+2(u) .

Proof. The first part of this lemma is a straightforward consequence of the
construction of 7. The second part will be proved in the next section.

where N(u) denotes the star St

We are now in a position to establish the main result of this paper.

Theorem 2. If k > 3r + 2, then there exists a linear operator T from C**'(A)
to S;°*(A) such that

(23) If = T flloo < Consty kA flis1, oo

where |f|k+l,oo = z)’l+)’2=k+1 ”Di'lD;'ZfHOO .

Proof. Let T be the operator described by the above approximation scheme.
Let f € C**1(A) be given. In order to estimate the error f — T f, we consider
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f(x)—(Tf)(x), where x is a point in a triangle 7 of A. Then there exists a
polynomial p € m; such that p(x) = f(x) and
(24) Ip(¥) = f(9)] < Consty. | flis1,00lA*! for all y € N(u).
By Lemma 3, we deduce from (24) that
) =Tf) =T =p)X)| < IT(f = P)lellos
< Consty, i [|(f = P)Ivwlloo < Consty il flirrt, 0ol AFH.

This estimate is valid for every x € A. Hence, the proof of the theorem is
complete.

4. STABLE BASES WITH LOCAL SUPPORT

In this section, by using the determining set as described in Section 3, we
shall construct a basis for S;’#(A) which is both stable and local.

To begin with, we establish the following result about the norm estimation
of the B-net ordinates of any function in S} #(A).

Theorem 3. Every b € R* N AL satisfies
[1blloc < Consty k||blylloo ,
where Y is the determining set for S;’*(A) as defined by (21).

Proof. Let M := ||bly||o . First, we show that, for n=0,1,... , u,
(25) |b(x)| < Const, , M,  xe ] X}
uev

Let u be any vertex. Among the triangles attached to u, let 7 =[u, v, w] be
the one that contains Y}, and let ¥ = [u, v, W] be the other triangle attached
to the edge [u, v]. Since b € AL, we have

- SﬂuSﬂvSﬂw
b(xa,‘?)z Z (a;)_u'g%w_wb(x(au,av,OHﬂ,r)a
|Bl=aw

where a = (ay, ay, ag) € Z3 with |a| = k and a, > k — u. From (16) we
see that

16Xy, 00,0048,0)| < M, ay>k—p.
Moreover,

|SBuSP SPu /S?0| < Const,.

This shows that

|b(x4,:)| < Const, o M, ay,>k—p.
Repeating this process, we obtain

|b(x)]<Const, y M, xeX;, n=0,1,...,u

Next, we shall prove (25) for n=u+1, ..., 2r. If u is a singular interior
vertex, this can be done by the same argument as before. On the other hand, if u
is a nonsingular vertex, we then prove (25) by induction on n as follows. Let n
be an integer in {u+1, ... , 2r} and assume that (25) holds for 0, 1, ... , n—
1. We wish to prove that (25) also holds for n. For this purpose, we shall
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employ the smoothness conditions given in Lemma 2. For a triangle 7 and
a € Zi with |a| = k, we let C, ; be defined as in (5). Let e = [u, v] be
an oriented edge attached to u, and let 7 = [u, v, w] and T = [u, v, W] be
the two triangles with common edge e . It is assumed that the orientation of
agrees with that of e¢. By Lemma 2, we have

m\ Sm—tS¢
C(k n,n—m,m) Zc(knnll)‘r(e)Tn_w,

for 0 < m < n < k. In order to estimate C, ., we introduce A, ., as follows.
For each triangle t = [u, v, w] attached to u and a = (ay, ay, ay) € Zi
with |a| =k, let
Ay 1:=Cq,c for0<ay,ay <r.

Moreover, if a=(k—n,n—+¢,¢) for some (n,¢) with u+1<n <2r and
2n—-3r—1<¢<n-r-1, we will consider

2n—3r—

A(knnll —C(knnll)r+zaljc(knnjj)
j=0

where the coefficients a,; are to be determined. Fix an integer j € {0, I,
2n—-3r—-2}.1f S, =0,weset a;;:=0 forall £ =2n-3r—-1,... ,n—r—1;
otherwise, let a,; be the solutions of the system

n—r—1 m S Jj—t m
£ (@) -() e

£=2n-3r—1

of linear equations. Since the matrix ((7)),_, <<, 2n_3r—1<o<n_r— 1S iOVETt-

ible, there exists a unique solution for (a;). The ‘choice of “(a¢j) was made in
such a way that the equalities

, Sm lsé
(26) A(k——n,n—m,m),i = z A(k n,n—¢,¢), T([) Sm

£=2n—-3r—1

are valid for all (m, n) with u+1<n<2r and n—r < m < r. Also, we
have _
‘agj (SU/Sw)]_Z‘ < Consty.

Since £ >2n—3r—1> j and |S,/Sy| < Const, , , we obtain
lazj| < Consty |Sy/Sw|’ ™ < Consty .
Next, we define, for convenience,
C(xq,7) = Co,z
and
A(Xq ¢)i=Ag.r forx, € X;, u+1<n<2r.
Then it follows from (26) that
(27) > Ax)A(x) =0 VieAj.

xeXxy
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Recall from Section 3 that Z? is a subset of X with #Z] = #A], such that
the inequality (19) holds for any subset Z of X? with #Z = #Al!. Rewrite
(27) as

Y AXAx) =— Y Ax)Ax),

xX€Z] XEXI\Z}
and apply Cramer’s rule to the above system of linear equations to yield

(28) A SHG\ZD) max [40),  xe€Zl, w+ls<ns<on
yeX\Z;

Since a is the smallest angle in A, the number of triangles attached to the same
vertex is bounded from above by a constant depending only on a; hence we
have
#(X; \ Z;) < Const, .
If y=xp . forsome B with f, >k —n and y ¢ X, then from the proof
of Theorem 1, we see that y € U} (X7, U X[ ,) U Y, ; thus, by the induction
hypothesis, we have
|b(y)| < Const, ; M.
This together with the construction of C(y) and A(y) implies that
|[A(»)| < Conmst, , M,  yeY)=X\Z].
Therefore, by (28), we obtain
|A(x)| < Const, M, xeZ].

Again, by the construction of C(x) and A(x), and by the induction hypothesis,
we have
|b(x)| < Const, , M, xezZpn

This establishes (25) for any nonsingular vertex u.
Finally, for x € X, , it is easily seen from the smoothness conditions across
the edge e that
|b(x)| < Const, , M.

This completes the proof of the theorem.

Now let us establish an equivalence relation between the norm of a spline
function and that of its B-net representation.

Lemma 4. Let f € S,?(A) and by its B-net representation. Then

(29) /Moo < 1bslloe < Consty || flloo-

Proof. According to the definition of b,, we have

(30) f(x) = Z baBa,‘t(x) 5 XET,
la|=k

where b, := bs(x, ). Since B, . are nonnegative and Zm:k B, (x)=1 for
all x € 7, it follows that ||f]jec < [|bfllos -

In order to prove the second inequality in (29), we consider the standard 2-
simplex o = {(x;, x2) : X1, x2 > 0; x| + X2 < 1} and a one-to-one affine map-
ping Q from ¢ onto 7. Since barycentric coordinates are invariant under
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affine transforms, we have B, (V) = Ba,.(Qy) for all y € ¢. Thus, it follows

from (30) that
=Y boBa,o(y)
. la|=k
Since B,,s, |a| =k, constitute a basis of 7, , we have

[ba| < Consty ggg{lf (@»)]} < Consty || flloo-
This completes the proof of the lemma.

We are now in a position to describe a procedure for constructing a stable
basis of S;’#(A). For a given point x in Y, it follows from Theorem 1 that
there is a unique By € S;’#(A) whose B-net representation b satisfies

1, y=x,

31 b(y)=
@ 0={o Jerew
Theorem 1 also tells us that {Bx : x € Y} constitutes a basis of S;'#(A).

Theorem 4. The basis {Bx :x € Y} of S;’#(A) is stable in the sense that there
are two positive constants K, and K, dependmg only on k and a such that

S eh

x€Y

(32) K, suplcxl < < Kj sup |cx|.
xX€Y

This basis is also local in the sense that for any x € Y there exists a vertex u
such that

(33) suppB; C St
Proof. We first prove (32). Let f =3 .y ¢xBx . Then the B-net representation

by of f satisfies by(x) = c, forall x € Y. By Lemma 4 and Theorem 3, we
have

=-Lr/2]+1
).

I/ llo < lbslloc < Const, sgglcxl-
X

On the other hand, Lemma 4 implies that
sup [cx| < Ibslloo < Consty || f]loo-
x€Y

The desired inequality (32) now follows at once from the above estimates.

To prove (33), let x € Y be arbitrarily chosen. If x € Y; for some triangle
7, then supp B, C 7. Generally, for a given x € Y, there exists a vertex u
such that the barycentric coordinate («,, a,, ay) of x, with respect to any
triangle [u, v, w] with u as a vertex, satisfies a, > % . For two vertices # and
v in A, we denote by d(u, v) the smallest number of edges among all paths
joining # and v. We claim that for any positive integer m < 2r + 1 — u, if
d(u, v) > m, then the B-net representation b of B, vanishes on J417"~ lX n
This will be proved by induction on m. If m = 1, then for any vertex v # u,
b vanishes on (J}_, Y"; hence, by the smoothness conditions around v, we
see that b vanishes on U . Let 1 <m < 2r+1—pu and assume that
our claim has been Justlﬁed for any positive integer £ < m. We must verify it
for m . Suppose that d(u, v) >m and d(v, w)=1. Then d(u, w)>m-—1.
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By the induction hypothesis, we see that b vanishes on U‘,j:{)"‘z(xg uXnr).
If ye X\ Z " and A(y) # 0 for some 4 € A“™ ! then we see from
the proof of Theorem 1 that b(y) = 0. Hence, b also vanishes on Z/*"~'.
This shows that b vanishes on X**™~', and therefore completes the induction
procedure. If d(v,u) > 2r+2 —u and d(v, w) = 1, then b vanishes on
Urz,;o X and Uf,; o Xe . Moreover, if one of # and v is an interior vertex,
then b vanishes on X, , where e is the oriented edge joining v and w . This
shows that b vanishes on the star Sz(v) of the vertex v. Therefore, since

2r+1—p=2r+1—- |3 | =|2], we'have supp By C §;Lr/2J+l(u).

It only remains to prove part (ii) of Lemma 3. For f € C(A), let 5 €
S,?(A) be the spline functions given in the approximation scheme as described
in Section 3, and let b be the B-net representation of s. By the construction
of Tf, we have

(34) Tf(x) =Y b()By(x), x€A.

yeyYy
Let 7 be a triangle of A with vertex ¥ and x € 7. Then By(x) # 0 only

if d(y,u) <|r/2]+2, or equivalently, y € §?Lr/2J+2(u) = N(u). Hence, the
number of nonzero terms in (34) is bounded above by Const, , . Moreover,

|By|lsc < Const, , by Theorem 4. Thus, it follows from (34) that
T < .
ITS(x)] < Consty i max_(1b(y)]}

By Lemma 4, we may now conclude that

yefg}(%(ny{lb(J’)l} < Consty||s|vw)lloo < Consty || f|nwlloo-

Combining the above estimates, we obtain the desired result (22).

FINAL REMARKS

1. Recently, de Boor and Jia [3] proved that the order of approximation of
S;(A) for k < 3r+ 1 and the three direction mesh A is at most k. Hence,
k = 3r+2 is the smallest degree for which S} (A) achieves the optimal approx-
imation order of k+1.

2. The main difference between our approach and the previous attempts in
[5] and [6] is that the set Z” for Al with the property that assertion (28) holds
forall xe Z? ,n=u+1, ..., 2r,is obtained by applying (19). Consequently,
the dependence of the approximation error on the near-singularity of the tri-
angulation A is eliminated. The price to pay is that the supports of the basis
functions, as given in Theorem 4, are necessarily larger than those of the vertex
splines in [5].
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