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1. Introduction

This paper is concerned with assessing the deviation from monofractality in measured high-
frequency signals. It has been observed that a wide range of complex structures in nature
is characterized by seemingly irregular behavior. Examples of such irregular signals in both
time and scale are abundant in medicine, physics, economics, and geosciences, to list a few.
Although irregular, such signals can be well modeled by multifractal processes. Concepts of
fractal dimension and self-similarity have been used to quantify the multifractal behavior.
The key idea is to quantify statistical similarity of patterns at many different scales. The
regularity index describes the strength of the similarity. The scaling is usually stochastically
complex and may include inhomogeneity of patterns in both time and scale. Multifractal
analysis has been developed in order to quantify the irregular scaling [25, 20].

The essence of multifractal analysis is to assess fractal dimensions of self-similar structures
with varying regularities and to produce the distribution of indices of regularity, which
constitutes the multifractal spectrum (MFS). The MFS describes the “richness” of local
singularities in the signal. The multifractal formalism relates the MFS to the partition
function measuring high-order dependencies in the data. In recent years, the multifractal
formalism has been implemented with wavelets [1, 12]. This approach is very amenable to
computation and estimation in practice. The advantages of using the wavelet-based MF'S are
availability of fast algorithms for wavelet transform, the locality of wavelet representations
in both time and scale, and intrinsic dyadic self-similarity of basis functions.

Rigorous mathematical foundations of the multifractal process and wavelet-based ap-
proaches have been studied by several researchers [22; 12]. Many applications to dynamics
of the multifractal processes [23, 15, 9], such as TCP/IP traffic data and financial data,
can be found. In addition, the wavelet-based fractal analysis is a pervasive concept in the
medical fields; many medical images, treated as signals, demonstrate a certain degree of self-
similarity over a range of scales, driving the development of data mining algorithms based
on fractal analysis of those images. A wavelet transform modulus maxima method combined
with a multifractal analysis was used to detect tumors as well as microcalcifications [26]. A
classification technique based on features derived from the fractal description of mammo-
grams was used [11]. The wavelet-based multifractal discrimination model was proposed to
determine ocular pathology based on the pupillary response behaviors exhibited by older
adults with and without ocular disease during the performance of a computer-based task [8].

The presence of multifractality in real-life signals is difficult to assess due to finite signal
sizes and numerical instability of assessing tools. Veitch and Abry [10] used a collection of
regularities on blocks of the signal, and Veitch et al. [9] reviewed the evidence for multifractal
behavior of aggregate TCP traffic using wavelet-based logscale diagram. In most of the
approaches for the assessment, level-wise analysis of L? norms of wavelet coefficients was
utilized. However, the slopes in this scaling behavior could be misleading because multifractal
signals may result in a perfect linear decay of energies. Also the slopes are sensitive to the
exponent in the partition function. Extraction of meaningful multifractal characteristics for
effectively assessing deviation from monofractality based on the MFS has not received much
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attention in the literature. The main contribution of this paper is the development of a test
for monofractality of a signal based on relevant multifractal descriptors from the wavelet-
based MFS. We demonstrate effectiveness of this test in simulations and real-life examples
that include turbulence and DNA nucleotide sequences.

This paper is organized as follows: in Section 2, singularity and scaling are discussed in a
wavelet context. Also we clarify the notion of deviation from monofractality. In Section 3, we
discuss how to compute MFS by using discrete wavelet transform and describe multifractal
descriptors in MFS. In Section 4, we propose a bootstrap-based testing procedure to detect
deviations from monofractality. Conclusions are provided in Section 5.

2. Monofractality

In this section we examine monofractality of a process by using the properties of singu-
larity and scaling in wavelet transforms. By inspecting decay of wavelet coefficients, we
can detect singularity and scaling simultaneously. We will discuss possible deviations from
monofractality at the end of this section.

2.1. Singularity and Scaling

A signal, or a process Y (t) is regular if it can be locally approximated by a polynomial. The
terms ‘process’ and ‘signal’ will be interchangeably used in referring to observed paths of a
random process. An irregular signal features local singularities. The singularity behavior of
a process Y (t) at time tq is characterized by Holder exponent Hy, (Lipschitz exponent): Hy,
is defined as the largest h such that there exists a polynomial P satisfying |Y'(t) — P(t)| <
C|t — to|" for t sufficiently close to to. Roughly speaking, saying that Y'(¢) has exponent h
at to means that, around ty, the process Y is bounded by the curves of Y (tg) + C|t — to|"
and Y (to) — C|t — to|" (see Figure 1 for graphical interpretation). If & is close to 0, the wide
boundary from the two curves allows for large variations. As H,; approaches 1, the process
becomes regular or smooth at the point t.

A process scales if its distributional properties are intrinsically invariant to changes of

a scale. A process Y (t) is self-similar with self-similarity index H > 0 (H-ss) if Y (at) <

aY (a). Here £ denotes equality in all finite-dimensional distributions. An H-ss process
with stationary increments exhibits long range dependence (LRD) when H > 1/2. A zero
mean Gaussian process By (t) with stationary self-similar increments is called fractional
Brownian motion (fBm) with Hurst exponent H if By (t) ~ N(0,02[t[*), and

Bu(t+7) — Bu(t) £ By(r) — By (0) < 7 By (1). (2.1)

As a fBm with Hurst exponent H, By (t) is is sometimes referred as fBmy. As a zero mean
Gaussian process, By (t) could be alternatively defined via its covariance structure:

E[Bu(®)Bu(s)] = 5 [[H + s — |t — 5|7, (2.2)
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Y (1)

Figure 1: Graphical interpretation of Hélder exponent h of a process Y (t) at a point ty. Note
that smaller i corresponds to a wider boundary within which the process is allowed to vary.

The scaling behavior of a signal is tightly related to singularity of wavelet coefficients [24, 18].
The singularity (Holder exponent) and the self-similarity (Hurst exponent) are obtainable
through multi-scale analysis of wavelet transforms. We will discuss wavelet transforms only
at the level needed to introduce the concepts of singularity and self-similarity.

2.2.  Wavelets: Detecting Singularity and Scaling

To detect the phenomena of singularity and self-similarity using wavelets, let us consider
an L'-normalized orthogonal wavelet basis comprised of 1, x(t) = 27¢(2/t — k). Wavelet
functions v; 1 (t) are generated from wavelet function v(t) by dilation by a scale factor 277
and translation of 277k. We assume that the ¢(¢) has R vanishing moments: [ "¢ (¢)dt =

0,7=0,...,R—1. The coefficients of discrete wavelet transform of a process Y are defined
by
b= [ YOt (23)

which carries information on the local difference of the process near to the position £ on a
dyadic scale j. Let k277 — t means that ¢ € [k277, (k + 1)277[ and j — oco. The results of
Jaffard [see 24, p. 291] and Gongalves [19] concern detecting singularity of a signal: if Y'(¢)
is of Holder exponent H, then

djx| = O@271),  as k277 —t (2.4)

for any wavelet with R > H. This means that the decay of the local differences of a process
is related to the singularity of the signal, provided that the decomposing wavelet is more
regular than the process.

Wavelets also enable us to detect the self-similarity of a signal. For an H-ss process with
stationary increments (H-sssi), it can be shown that

dip L2798y, L2711 dy . VE, (2.5)
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which leads to the same order of |d; | as in (2.4). Note that L? normalization is used in
computations for the sake of computational simplicity, and L! normalization is selected in

discussions to simplify the rate of the decay: for L*-normalized wavelets, d; x L o—j(H+1/ Ddy .
The equation (2.5) also serves as a basis for wavelet based estimation of H:

log, E|d; x|* = —jqH + C,, (2.6)

where C, is a constant depending on ¢, wavelet function ¢, and the magnitude of the signal.
The partition function

T(q) = lim (~1/5)log, Eld;ul

measures the scaling of the higher order dependencies and the singularity structure of the
process at the exponent ¢. Since index k is arbitrary, given d;; within the level j, the
partition function does not depend on k. In particular, for the H-sssi signal or the signal
with Holder exponent H, equation (2.6) rewrites as log, E|d;;x|? = —jT(¢) + C, where C' is
a constant.

A practical estimation of H is based on empirical moments of the wavelet coefficients at
dyadic scale j:

- 1
Si(q) = n. Z \d; x|,
7ok

where n; is the number of d;; available at dyadic scale j. We assume that the wavelet
coefficients are uncorrelated, and hence independent, as has been approximately the case
in various contexts (see [17] for a review and [16] for numerical simulations). A plot of

the logarithm of the estimates Sj(q) against 7, (j, log, Sj(q)>, is called qth order Logscale

Diagram (¢-LD): it is also a wavelet spectrum for g=2. These diagrams result in straight
lines with slopes of —qH, or —T'(q), for the fBmy or signals with Holder exponent H over the
interval. Straight lines in ¢g-LDs provide empirical evidence for monotone scaling. Partition
function T'(q) is estimated as the slope in the following regression:

log, S;(q) = —jT(q) +¢;, (2.7)

where the error term ¢; is introduced by the moment matching method when the true
moments are replaced with the empirical ones. Simple ordinary least square (OLS) is the
most convenient choice to estimate the partition function. It is convenient but not correct
— according to Abry the regression has to be weighted since the variances of €; vary with
the level j. Figure 2 shows wavelet spectra from three simulated {Bmy with different slopes
under L? normalized Haar wavelet. In what follows, the Haar wavelet was used unless
mentioned otherwise.

Next, we will analyze the concept of deviation from monofractality by relating it to ¢-LDs.
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Figure 2: Simulations of fBm with (a) H = 0.33, (b) H = 0.50, and (¢) H = 0.80; in the
lower, the corresponding wavelet spectra are shown; as H gets larger, the spectrum line gets
steeper.

2.3.

We consider deviations from the linearity of log, E|d; ;|? over dyadic scale j as evidence of
deviation from monofractality. We make a distinction between deviation from monofractality
and evidence for multifractality as the two are not synonymous: for multifractality is richer as
a form of scaling behavior associated with randomness and distribution. Multifractal signals
possess rich scaling behavior and deviation from linearity of the spectrum is not sufficient to
characterize multifractal signals. For instance, multifractal signals can have perfectly linear
2nd order spectra as exemplified later. Distribution of local singularity is required to assess
multifractality.

Linear scaling behavior at ¢-LDs does not necessarily provide evidence for monofractality
of monofractality since multifractal signals can show linear scaling behaviors. Figure 3(a)
shows a realization of the multifractal wavelet model (MWM) and its cumulative sum [23].
Since the signal, generated to be nonnegative, was regarded to be comparable to fractional
Gaussian noise, we took the cumulative sum, which reveals a more stable scaling behavior.
Indeed, the Hurst exponent, 0.9255, from the cumulative sum was reasonable. The wavelet
spectra of the two signals are shown in Figure 3(b), which reveals that the spectra are
linear while the signal is multifractal. MWM is a multifractal extension of traditional fBm
models and the MWM synthesis is a multiplicative and coarse-to-fine construction of scaling
coefficients for positive and stationary LRD signals. It models the wavelet coefficients of a
signal as d; ;, = a; ,u;, with the multiplier a;; being independent random variables on [—1, 1]
and w;;, being an approximation of the signal at dyadic scale j. The simulation in Figure 3(a)
was done by 8 multifractal wavelet model using beta distribution as the multiplier a;; and

Deviation from Monofractality
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fBmg g as the initial approximation of the signal u; in the coarsest level. This observation
that the multifractal signal has linear spectrum indicates a weakness of spectral slopes in
characterization of deviation from monofractality.

Moreover, scaling behavior is sensitive to the exponent ¢ in ¢-LD. Figure 4 shows different
scaling behavior over the exponent for simulated signals from fBmg 3 + fBmg ;. The spectral
slopes from 2-LLD in 4(a) and 6-LD in 4(b) were —2.2013 and —6.659, respectively, which
resulted in different Hurst exponents, 0.6626 and 0.7454. Figure 4(c) plots boxplots of 1,000
estimators of H for different exponent ¢q. Thus, looking at an isolated ¢ will not be sufficient
to confirm monofractality. This also emphasizes the shortcoming of spectral slopes and
motivates the MFS to consider different scaling behaviors relevantly. Instead of making
scaling inferences on the spectral slopes, one can adopt an empirical approximate of the
MFS from wavelet-based partition functions that include information on the spectral slopes.
Now, we propose a testing procedure to distinguish signals of monofractality from those that
deviate from monofractality based on the MFS.

0 -0.694918
-05| -2.85123

10 11 12 3 4 5 9 10 11 12

Figure 3: (a) One realization (in solid blue) of the multifractal wavelet model overlapping
with its cumulative sum (in dashed red) scaled by 1/200; (b) the wavelet spectrum of the
signal; (c) the wavelet spectrum of the cumulative sum, which shows a clearly linear scaling
behavior.

3. Multifractal Spectrum

MFS of a process is a summary of its scaling and singularity properties. Here we describe
MF'S and discuss how to apply it in measuring deviations from monofractality.
Let us consider the local singularity strength of wavelet coefficients as follows [19]:

1
)= lim —-1 d; k. 3.1
a(t) = Jlim —~log; |d; (31)

The local singularity strength measure (3.1) converges to the local Holder exponent of the
process at time ¢. Small values of «(t) reflect the more irregular behavior at time t. Any
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Figure 4: (a) 2th order logscale diagram for a fBmg 3 + fBmg 7; (b) 6th order logscale diagram
for the signal; (c¢) boxplots of estimated Hurst exponents over the scaling exponent ¢; the
estimated Hurst exponents would not vary with all exponent ¢ if the process was monofractal.

inhomogeneous process has a collection of local singularity strength measures and their
distribution f(«) forms the MFS. A direct way to obtain this spectrum is to use the counting
technique,

fla) = lim lim, %10g2<2j#{k 0 27OF) ;] < 2*3'(&*@}), (3.2)
which captures the limiting frequency of occurrences of a given singularity o and ranges
from —1 to 0. It relates to the distribution of the local singularities. Smaller f(«) implies
fewer points in ¢t behave with singularity «. If all points in ¢t behave with singularity o*, then
flar) = 0.

Although it is feasible to estimate the MFS using (3.1) and (3.2), the method is not
practicable due to the computational difficulty of approximating the limit. The multifractal
formalism enables MFS f to be calculated by taking Legendre transform f; of partition
function T', fr(«) := inf,{ga — T'(q)}: using the theory of large deviations, one can show
that fr(«) converges to the true MFS f(«) [23, 22]. Because of the log-convex property of
the moment generating function and concavity of T'(q), f is obtained as follows:

frla) =qa—=T(q) at a=T'(q).

Using the estimator T(q) of T'(q) in (2.7), for equally spaced ¢; with spacing qo = ¢; — ¢;_1,
we estimate fr(«) as follows [19]:

6 = [T(g41) = T4}/ o, (3.3)

fL(@i) = qiCy; — T(Qz’)-

Inspecting the MF'S of monofractals is beneficial to build intuition on the variety of shapes
of the Legendre transform based MFS of different signals.
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Example 1. For a fBmy in (2.1), it is easy to show that L'-normalized wavelet coefficients
are

dj,k ~ N(O, Uinsz),

where oy, is a constant that depends on the wavelet function ¢ and the magnitude of the
signal, hence the partition function 7" and the MFS as Legendre transform f; of T" become

s <1 —00, a< H,
T(q) = =T and fila) =400, a=H,
qf, ¢> -1 H—-—a ao>H.

Figure 5 depicts the theoretical partition function and the corresponding MF'S for fBm 3.
Note that both are the Legendre transform of each other: the slope —1 and the intercept
(0, H) in Figure 5(b) of MFS correspond to a point of (—1,—H) in Figure 5(a) of partition
function 7'(q).

1.5 :
0.3 O (0H)
1 0.2
: 0.1t g
0.5 - Slope=H=0.3 ~Ho
G g °
= = 0.1}
0,‘
-0.21 Slope = -1
—05 -0.3f
-0.4f
-1 -0.5 )
-1 0 1 2 3 0 02 H 04 0.6 0.8 1
q o

Figure 5: (a) Partition function 7'(q) of fBmygs; (b) MFS f(«) of the signal.

Example 2. Suppose we observe different fBm processes varying with time intervals: X (¢) is
given by
X(t) = Bp, (), t € [tr1, til,

for K = 1,2,3, and H; < Hy < Hj. Since T(q) is determined by the minimum of Hurst
exponents when ¢ > 0 and by the maximum when ¢ < 0 [14], we have

—0Q, q < _17 —0Q, o< Hl,
T(q) =4 a3, —-1<q¢<0, and fr(o)=4 0, Hi <a<Hs;,  (34)
qHq, q=>0, Hs —«, o> Hs.
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The illustration of (3.4) is shown in Figure 6 for H; = 0.3, H; = 0.5, and H3 = 0.7. It is
worth mentioning that the MFS is flat in the interval between min{H;} and max{H;} and
that information on regularities between min{ H;} and max{ H;}, which is Hj in this example,
is lost in 7'(¢) and fr(c). We will see in the next section that some of the low-dimensional
descriptors of MFS are consistent with the deviation from monofractality.

1 T
0.8l o (OHy
06 0.6
Slope:H1:0.3
0.4r — —
0.4- H,=0.3,H,=0.7
0.2r
s )3 g 02
= =
-0.2 (H,.0) (H,;0)
—H, = or q
-0.4 Slope: H3 0.7
-0.6
-0.2 Slope = -1
-0.8 (-1,-H)
-ir -0.4
-15 -1 -05 0 0.5 1 15 2 2.5 3 0 H 0.5 H 1 15
q 1 3
(a) (b)

Figure 6: (a) Partition function 7'(q) of X (¢); (b) MFS f(«) of the signal.

3.1.  Multifractal Descriptors

Rather than operating with MFS as a function (density), we summarize it by a small number
of meaningful descriptors. These descriptors are interpreted in terms of location and shape
of MFS because they are calibrated by the counterpart of MFS of monofractal signals.
Theoretically, the MFS of fBm (a representative of monofractal) consists of three geometric
parts: the vertical line, the maximum point, and the right slope, as is shown in Figure 5(b).
However, it is rare to obtain such a perfect spectrum in practice. Even for the well simulated
fBm, due to error of estimation (most of them are due to the partition function estimation
and derivative calculation as presented above), the MFS deviates from the theoretical form,
as shown in Figure 7. Panels (a) and (b) of Figure 7 show theoretical MF'S as a solid blue line
and empirical MFS as a dashed red line for fBmg s and X (¢) in the example 2, respectively.
Notice that the maximum or mode is well approximated, but the slope exhibits discrepancy
between theoretical and empirical MFS due to numerical instability.

Despite the existence of estimation error, the MFS can be approximately summarized
by 3 canonical descriptors (multifractal descriptors) without a loss of the discriminant infor-
mation. The proposed summaries are (1) the spectral mode (Hurst exponent, H), (2) left
slope (LS) or left tangent (LT') and (3) width spread (broadness, B) or right slope (RS) or
right tangent (RT'). A typical MFS can be quantitatively described as shown in Figure 8(a).
There are many ways to define the broadness (B). These descriptors have been successfully
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Figure 7: Theoretical MFS (solid blue line) and an empirical MFS (dashed red line); (a) for
fBmgs; (b) for X (¢) in the example 2; empirical MFSs deviate from theoretical ones.

used in classification procedures as in Derado et al. [11] and Shi et al. [8] In this paper, we
select the following definition [8].

Definition 3. Suppose that a; and as are two roots which satisfy the equation f(a)+C =0
and a; < ag. The broadness (B) of MFS is defined as B = as — a;.

Ha(@) Slope=H .~
T(@) )
Hurst Exponent i
[ [
Slope =
Left Tange . P S o
7Y I )
( ), “‘v:v..-"-'ef:LSSI;Jpe i R\gr(]ég)ope_\x ug_r:t(ga;?gem ’ ......
_C____"‘_f_____________i_________________.:; S /’ _ C
| | Broadness (B) iy C-- LS = H
il : i -
a H a, a(q) o q
(a) (b)

Figure 8: (a) [llustration of geometric descriptors of MFS. Note that the horizontal axis rep-
resents values of Holder exponent a(q), while the vertical axis represents values proportional
to the relative frequency of these indices, f(a(qg)); (b) interpretation of left slope (LS) with
partition function 7'(¢); LS is obtained by the two slopes (H and «y) of the two tangent
lines; LS is adopted as a measure of deviation from the straight line passing through the
origin.
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The suggested multifractal descriptors are graphically presented in Figure 8(a). Fig-
ure 8(b) shows the link of descriptor LS to the configuration of partition function 7'(q).
Note that LS is determined by two points (—C, ;) and (H,0) in Figure 8(a), which corre-
spond to the tangent line passing through (0, C') in dotted green and the tangent line passing
through the origin in dashed blue in Figure 8(b). It should be also noted that the threshold
value C' in the definition could be adjusted empirically in the practical analysis to ensure
that this measure is well computed for signals under analysis. In practical implementations,
we use C' = 0.15 or 0.2.

Another difficulty in computation is caused by the discreteness of «(q). The problem is
that it may be approximate to find the exact roots of the equation f(a)+ C' = 0 among the
discrete values of a’s. To circumvent this issue, we first find the two closest points (a!, f(al))
and (o, f(a)) for each i such that

fld)y<—C and f(a¥)>-C, i=1,2,

and then obtain the two solutions aj, ay by interpolation. The slopes LS and RS and
tangents LT and RT can be obtained using the interpolation technique, as computed by

LS=C/(H—-ao) and RS=-C/(az—H),
LT = (f(af) = f(a1))/(af —a}) and  RT = (f(a3) — f(ah))/(a5 — aj).

Interpretation of H and LS (or LT) is straightforward. The apex of the spectrum or the
most common Holder exponent « found within the signal represents the Hurst exponent H.
The slope of the distribution produced by the collection of Hélder exponents a with smaller
values of the mode (H) represents LS (or LT).

In this study, we selected the LS as the multifractal characteristic for measuring deviation
from monofractality because the monofractality theoretically corresponds to a vertical line
at H, that is, infinite LS, in MFS. We related the extent of deviation from the vertical line
to the characterization of monofractality, which is explored more in the following section.

(3.5)

4. Test for Deviation from Monofractality

In this section, we analyze the MFS summaries as possible statistics for assessing deviation
from monofractality. For this goal, the LS turns out to be an informative index.

4.1.  Left Slope as a Measure of Deviation from Monofractality

We start with intuitive interpretation of LS, connecting it with the partition function 7'(q).
Geometrically, a in Figure 8(a) is the slope of the tangent line whose intercept is C' in Figure
8(b). In addition, H in Figure 8(a) is the slope of the tangent line that passes through the
origin. Theoretically, the expectation of T'(¢) is linear in an ideal case of fBm, which leads
to a perfect vertical line at the Hurst exponent as in Figure 5(b) and thus the infinite LS.
Empirically, the wavelet-based estimator T'(¢) of T(q) in (3.3) deviates from the straight line

76



Kichun Sky Lee et al. Regularity of Irregularity

because of the finite approximation to the moments and numerical instabilities. This causes
LS to be finite for empirical fBms. As a result, LS incorporates information on the shape of
the partition function. It reflects deviation from the straight line passing through the origin:
the more linear the partition function, the larger LS. The process X (), which is a synthetic
superposition of the three fBms, in Example 2, lead the flat segment between min{H;} and
max{H;} (as the solid blue line in Figure 7(b)) and much wider breadth compared to MFS
of the individual fBm (as the solid blue line in Figure 7(a)). The theoretical MFS has a
wide breadth (as the solid blue line in Figure 7(b)) leading to small LSs for its empirical
processes (as the dotted red line in Figure 7(b)) in comparison with those for empirical fBms
(as the dotted red line in Figure 7(a)). We attribute this decrease to the deviation from
monofractality of the signal.

To emphasize this point, consider a multifractional Brownian motion (mBm) with time
varying Hurst exponent. A mBm with H(t) (mBmp) is a zero mean Gaussian process
defined as in (2.2) by replacing H with a time-varying H(t) [3, 13]. Specifically, we consider
a mBmp ) with H(t) given as, for T' = 2'1,

H(t) = gwoa, tefoT).

Next we compare this mBmy ;) with a standard Brownian motion, fBmgs. In Figure 9(a) and
Figure 9(b), simulated signals of the two processes and the corresponding MFS are shown.
The LS of mBmy ;) was smaller than that of fBmgs (0.48 compared to 1.09). In Figure 9(c)
and 9(d), the partition functions from the two signals are shown, respectively. The shapes of
the two partition function that carry information equivalent to MFS are strikingly different.
The LS reflects the difference of the two tangent lines (dotted red and dashed green) for
each partition function: the larger the difference of the two slopes, the smaller the LS. We
observe that the partition function in 9(d) deviates from the theoretical partition function
(the straight and dotted red line) more severely than that in 9(c). The slopes of the two
tangent lines (the dashed green lines) of the two partition functions that pass through the
point (0,0.2) are different due to dissimilar shapes of the two empirical partition functions.

This behavior of LS is consistent whenever the monofractality of the signal is violated.
Using this observation, we propose a testing procedure described in the next section, which
tests the monofractality of a signal based on LS. The details of the testing procedure and
its applications are provided.

4.2. Parametric Bootstrap Test

Bootstrapping is a computer-based method for assigning measures of accuracy to statistical
estimates with sampling from an approximating distribution [7]. The advantage of boot-
strapping is that it is straightforward to simulate empirical null-distributions of complex
statistics such as percentile points, proportions, odds ratios, or correlation coefficients. The
bootstrap method may also be used for constructing hypothesis tests as an alternative to
inference based on parametric assumptions. In the case in which exact distributions are

7



Kichun Sky Lee et al. Regularity of Irregularity

fo)

25 H=053 25f H=047

2t ,=034 2t o, =0.06

LS =0.20/(H-0) =1.09 . 15} LS=020/(H-0,)=0.48

T(a)

05t (0,0.20) .
- 26 e

Figure 9: (a) Simulated signals of fBmgs in a dotted red line, mBm with straight line
H(t) = %t +0.2 in a solid blue line, T' = 2'*; (b) MFS of the fBmy 5 in a dotted red line and
of the mBm in a blue solid line; (¢) partition function for the fBmgs; (d) partition function
for the mBm.

unknown or analytic procedures are too complex to obtain, even an approximation to the
distribution, the bootstrap techniques are employed. In our case, the distribution of LS
for monofractality of fixed size, wavelet basis, and precision settings of MF'S calculation are
overly complex.

With LS as a measure of deviation from monofractality, we propose a new testing proce-
dure to check if a signal is monofractal; Hy: the signal is monofractal vs. Hy: not Hy. This
type of hypothesis is a goodness-of-fit type. Not rejecting Hy leads to the conclusion that
the signal is consistent with assumption of monofractality. Rejecting Hy does not indicate
multifractality, but just a violation of monofractality or inconsistency of the monofractality
assumption. The proposed test is conducted with parametric bootstrap which is outlined in
Figure 10. We start with an observed signal and a wavelet basis with a sufficient number
of vanishing moments; and also fix C' as in Definition 3 and ¢; in (3.3). The following steps
describe the testing algorithm:

[1] Calculate LS and H as estimators of LS and H, respectively, for an input.

(a) Calculate wavelet coefficients d;, as in (2.3).
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(b) Estimate the partition function 7'(¢) with d; as in (2.7).
(¢) Estimate the MFS f(«) with T(q) as in (3.3).
(d) Estimate H as the maximizer of f(a) and find LS as in (3.5).

2] Generate B copies of fBmy, and for each copy (realization) find LS**, b =1,..., B;
this is the parametric bootstrap step.
[3] Construct a bootstrap distribution of LS using bootstrap replicates; find empirical
0.05 quantile (go.05)-
[4] Tf the LS is less than g5, reject Hy.
To simulate a sample path from a fBm, we used the method of Wood and Chan, which is
based on Fourier transform [6]. We construct an empirical distribution of LS as a surrogate
of the true distribution of the true LS from B number of replicates of fBm . Since signals
of monofractality have high LS values, the achieved significance level (ASL) of the test is
the proportion of the number of replicates for which the left slope (LS*?) is less than LS
to the total number of replicates (B). In hypothesis testing with bootstrapping, ASL is the
counterpart of the p-value in the classical hypothesis testing. We can also adjust the quantile
of go.05 to be different from that of 0.05.

Parametric bootstrap

2

. *
signali —LS™
observed

signal : b —/Bm(H) signal2 —LS™
LS

| signals —LS"?_|

Achieved — n
significance .| | Distribution of LS
level (ASL) ™

Figure 10: Parametric bootstrapping for testing whether a signal observed is monofractal;
the achieved significant level (ASL) of the test is the area of the bootstrap distribution
enclosed with the solid red line since monofractal signals have high values of LS.

4.3. Experimental Result

We perform a simulation experiment to test the following non-monofractal signal X (t) for
monofractality:

X(t) = By, (t),  te€[tr+ 1t +2"

for t, = (k—1)21° k =1,...,4, and H, = H3 = 0.3, H, = Hy = 0.7. We chose B as
5000, C' as 0.15, and ¢; as equi-spaced with size 0.2 on (—1 6]; and tested 3000 samples of
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X(t). Obviously, the signal is not monofractal since regularity is not constant across the
time. We want to test if Hy: X (¢) is monofractal vs. H;: not Hy. An illustration of X (),
its wavelet spectrum, its MFS, and the empirical distribution of LSs are shown in Figure 11.
The wavelet spectrum in Figure 11(b) shows a monotone decay across the dyadic scales, and
yet the LS was 0.38 in 11(c), which is indicating irregular scaling. We show the normalized

1

-1.59643

log spectrum
|

6 7 8
0 500 1000 1500 2000 2500 3000 3500 4000 dyadic level

(a) (b)

alpha=0.05

critical value=0.6759

f(ola)
Histogram

LS of the X(1)=0.3774

o8 1 1z 1a 16 1s (] 05 1 15
(@) Left Slope

() (d)

Figure 11: (a) An illustration of X (¢); (b) its wavelet spectrum; (c) its MFS; (d) bootstrap
distribution of LS*® with the LS (0.38) for the signal (in red circle) and a rejection region
of 95% achieved significance level (within the solid red line).

25 3

histogram (bootstrap distribution) of LS*® from the 5000 bootstrap fBm simulations and the
critical region of level 0.05 in Figure 11(d). The LS clearly falls in the rejection region and
Hy is rejected: The ASL of this test was 0. Out of the 3000 tested signals, 2838 signals were
concluded not to be monofractal: The rate, or ability to recognize the true non-monofractal
signals, was 0.946. Next we apply this to real-life examples.

4.4. Turbulence and DNA Examples

To illustrate the test procedure in a real-world example, we compared a turbulence signal with
a fBm, /3. Understanding the properties of turbulence is a major problem of modern physics,
which remains mostly open despite intense research efforts from 1941 when Kolmogorov
formulated a statistical theory of turbulence [4]. Kolmogorov introduced his theory, often
referred to as K41 theory, for locally isotropic turbulence. The velocity field is modeled as a
process U(x) with increments having the following structure function of order p:

E[JU(x+7) = U(2)[P] « (er)t.
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Parameter €, energy per unit of fluid mass per unit time, describes the energy transmission
from large eddies, where the energy is injected, to small eddies, where the energy is converted
to heat by viscosity. The K41 theory states that a one-dimensional longitudinal trace of a
three-dimensional velocity field is a fractal noise process with constant Hurst exponent 1/3
and models turbulence as a monofractal. Though the theory was verified in many empirical
observations possessing the property of monotone spectral decay, it does not take into account
the existence of coherent structures such as vortices and helicity. Kolmogorov [5] refined the
homogeneity assumption of € to be a location-varying dissipation rate e(x), which leads to
the model of multifractional Brownian motion. This turbulence model is not monofractal.

We tested a turbulence signal of length 2'* from velocity measurements on July 12, 1997
at 5.2 m above the ground surface over an Alta Fescue grass site at the Blackwood division
of the Duke Forest in Durham, North Carolina to check if the turbulence is monofractal. In
Figure 12(a), the turbulence signal and fBm, /3 are in a solid black line and a dotted red line,
respectively. The average log spectrum of squared wavelet coefficients for the two signals
are shown in Figure 12(b). The spectral slopes are indistinguishable; the two signals do not
differ with respect to their second order properties. The wavelet spectrum of the turbulence
signal is shifted upwards from that of fBm, /3 because of difference in their energies.

The two MFS along with their descriptors are shown in Figure 12(c): the MFS of the
turbulence signal is wider than that of the fBm, /3 signal. To quantify the degree of deviation
of the turbulence signal from monofractality, 10,000 samples of the fBm, 3 and the empir-
ical distribution of estimated LSs were obtained as is shown in Figure 12(d). Two circles
represent LSs of the turbulence (left in black) and the fBm; /g (right in red). The critical
point at 95% is highlighted with the solid red line in Figure 12(d). The left black circle,
corresponding to the turbulence signal falls in the critical region, leading to rejection of the
null hypothesis. We concluded the turbulence signal was not monofractal.

Next, we demonstrate our method in an analysis of DNA sequences. In the analysis of
DNA sequences, one of the most important tasks is to study whether two sequences are
related. This is studied by using a scoring system to rank the possible relations between
the sequences and by considering statistical methods to evaluate the significance of such
relations [21]. Often the sequences of nucleotides (A, C, G, and T) are coded as functions
or DNA walks, and fractal properties of these associated functions can be informative for
functional properties of DNA segments [2].

The analysis of DNA walks is influenced by the presence of a global linear trend induced
by the excess of purines over pyramidines. In all eukaryotic species, a DNA molecule consists
of a long complementary double helix of purine nucleotides (denoted as A and G) and
pyrimidine nucleotides (denoted as C and T). A single strain of this DNA can be represented
as a long word that corresponds to a random walk. Depending on the letter at position ¢ in
the word, the random walk gets a cumulative sum of increments of z(i) = 1 for A and G, and
z(i) = —1 for C and T. Hence, the corresponding random walk is defined as s(n) = > | z(i),
in which n is an index smaller than the length of the sequence.

In Figure 13(a), we show an 8196-long DNA random walk for a spider monkey from
the EMBL Nucleotide Sequence Database, which is also known as the EMBL-Bank. The
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wavelet spectrum and MFS of the signal are shown in Figure 13(a) and 13(b), respectively.
The estimated Hurst exponent was 0.648 and the left slope was 1.47. We noticed that
the MFS yielded only the left part from the mode because the partition function was flat
for negative exponents and made the right part of the MFS computationally unobtainable.
The empirical distribution of LS** from 10,000 simulations of fBmyggss is shown in Figure
13(d). The ASL of the observed LS (1.47) was greater than 0.05, by which we conclude
that the signal is monofractal. This conclusion is in accordance with the observation made
by Arneodo that the DNA sequences are the most perfect monofractals found in nature
(personal communication).
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Figure 12: Comparison of the turbulence and fBm; /3 signals; (a) turbulence in a solid black
line and fBm, /3 in a dotted red line are indistinguishable with respect to their second order
properties; (b) log spectra for the two signals with two spectral slopes produced identical
slopes; (c) MFS and the descriptors for (a); (d) the bootstrap distribution of LS** along
with two circles (left in black for LS, 0.73, of the turbulence signal, right in red for LS, 1.43,
of the fBm; /3) signal and a rejection region of 95% achieved significance level (within the
solid red line).

5.  Conclusion

Evidence for deviation from monofractality, which is contained in the partition function and
MFS, can be used to develop a paradigm for formal testing for deviation from monofractal-
ity. In this paper, we introduced a measure of deviation from monofractality by using left
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Figure 13: Demonstration of the test of monofractality to a DNA random walk: (a) 8196-
long DNA random walk for a spider monkey from the EMBL Nucleotide Sequence Database;
(b) wavelet scaling with slope —2.296 and estimated Hurst exponent 0.648; (¢) MFS with left
slope 1.47; only the left part from the mode was computationally available due to a straight

line in the partition function of negative exponents; (d) the distribution of LS*® with the LS
(1.47) in a red circle.

slope as one of the descriptors of wavelet-based MF'S of a signal. We constructed a test pro-
cedure based on parametric bootstrapping of sampled fBm signals which are monofractals.
This produces a distribution of left slopes consistent with the assumption of monofractality.
Our simulation results indicate that the testing procedure effectively separates multifractal
Brownian motion signals from fBm signals. Its effectiveness is also shown in the real life
example of turbulence and DNA sequences, first as an example of multifractal, and second
as an example of monofractal.
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Abstract

DNA methylation is an important epigenetic phenomenon that is associated with a va-
riety of diseases, particularly cancers. Recent development of high throughput sequencing
technology has enabled researchers to investigate the methylation rate at a single nucleotide
resolution for any given sample. Testing for methylation rate equality or difference between
two samples, however, is challenged by the small sample size observed at many sites across
the genome. Fisher’s exact test is typically used in this situation; however, it is conservative
and it cannot be used to test for specific difference in methylation rate between two samples.
In this paper, we propose an empirical Bayes approach that utilizes the genome-wide data
as prior information for methylation differentiation between two samples. We show that this
new approach is more powerful than Fisher’s exact test. In addition, it can be used to test
for any specific methylation difference while controlling the false discovery rate (FDR). The
new method is applied to a real data set from a colon tumor study.
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1. Introduction

The epigenetic phenomenon of DNA methylation, in which cytosines in CpG dinucleotides
are chemically modified by the addition of a methyl group, plays an important role in genetic
regulation [1, 2]. Methylation rates are known to change throughout the genome during
development in mammals [3, 4]. Furthermore, differential methylation rates are associated
with a variety of diseases, including neurodevelopmental disorders [5], and numerous cancers
6, 7, 8, 9.

Most research up to now has focused on methylation rates over large regions of the
genome; however, an increasing number of studies attempt to quantify and analyze methy-
lation rates at specific sites [1, 2]. Methods making use of universal bead arrays have been
able to detect differential methylation rates at the single nucleotide resolution and have
demonstrated that these differences can be used to distinguish normal and cancer tissues
[10]. However, the array based methods are limited in terms of the number of sites that
can be examined; for example, only 1536 sites were included in the study by Bibikova et al.
[10]. Another approach, the one which will be the focus of this study, makes use of high
throughput bisulfite sequencing. This method is increasingly common and has the potential
to examine hundreds of thousands or millions of sites simultaneously. For example, Laurent
et al. [11] and Gu et al. [12] both made use of bisulfite sequencing to generate maps of
methylation with single-nucleotide resolution, Han et al. [9] tested for site specific differen-
tial methylation in samples taken from subjects with and without lung cancer using bisulfite
sequencing, and Houseman et al. [13] used clustering methods to differentiate methylation
rates.

The data set produced by Gu et al. [12] is used for illustration in this study. The data
was for two tissue samples, a colon tumor and normal colon tissue, both taken from the same
donor. Bisulfite sequencing was used to determine methylation status at targeted CpG sites
across the genome. At each site (corresponding to the C in a CpG dinucleotide), the data
included the number of reads (number of sequenced DNA fragments) that covered the given
site, and the number of reads that were positive for methylation at the given site. Figure
1 illustrates the format of the data. A total of 920,441 sites had at least one read for both
tissue samples and only these sites were included in the present study. Although a few sites
had very large numbers of reads, some with more than 1400, the majority were small, with
a median of 10 or fewer across both samples. Summary statistics for the number of reads
are given in Table 1.

The central goal of methylation studies is to identify CpG sites or regions that show
differential methylation rates between disease or cancer tissue and normal tissue. Given the
small number of reads (or sample size) at a given site, Fisher’s exact test is often the only
choice for testing the equality of methylation rates between two samples. Fisher’s exact
test, however, is conservative in power. Furthermore, it cannot be used to test for specific
difference in the methylation rates between two samples. The latter is particularly important,
as in practice, a meaningful difference in methylation is often called only if the methylation
rate in one sample is higher /lower than the other by a predefined threshold value (see details
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Figure 1: Format of data.

Region 1 Region 2
Read 1 * & Read 5 * * -
Read 2 * o Read 6 — - —@
Read 3 V] Vi Read 7 —_———————— @~
Read 4 Vi P
ny 4 4 n; 3 3 3

Xij 4 1 Xij 1 3 0
Figure 1 shows two regions of equal length that contain the targeted CpG

sites for methylation examination. Bisulfite sequencing generated two groups
of short reads of identical length, each of which covered one of these regions.
For example, in region 1, four reads were generated. Within each read, the
methylation status at the sites were identified as positive or negative. In the
figure, n is used to denote the total number of reads observed at a given site,
and z the number of methylations (positives) observed across reads.

Table 1: Quantiles for number of reads per site (n;;).

Minimum Q1 Median Q2 Maximum
Normal 1 2 6 14 14043
Tumor 1 3 10 25 14361

below). These two limitations motivate us to seek an alternative approach.

In this paper, we proposed an empirical Bayes (eB) approach, in which we utilize the
large amount of data observed from the entire genome to construct a prior distribution for
the methylation rate. Based on the posterior distribution of the methylation rate at each
site, we test for difference of methylation rate while controlling false discovery rate. We show
this new approach has improved power compared to Fisher’s exact test. In addition, it can
be used to test any specific difference of methylation rates between two samples.

2. Methods & Results

2.1. The Model

Let z;; be the observed methylations out of a total of n;; reads at site ¢ from sample j
for i = 1,...,M and j = 1,2, and 0;; be the true, unobserved, methylation rate. Let
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N = (Nl,Ng), X = (Xl,Xg) where N] = {nw D= 1, ,M} and X] = {.CEZ] D= 1, ,M}
We assume that the methylation rates are independent across samples and sites, and have a
common distribution within each sample,

0i; ~ Beta(v;, Aj)-

Note that although the model allows for the possibility that the samples may differ with
respect to the hyper-parameters v and A, results given below show that in practice a single
set of hyper-parameters can be used if the samples are similar. We further assume that each
read is a random observation from the population, i.e., the entire underlying tissue. Then
x;; follows a binomial distribution

l‘ij|(nij, 02]) ~ Binomial(nij, 923)

The posterior probability for the methylation rate given the reads data is then
9M|(nij, l’z’j) ~ Beta(’}/j + Lij, )‘j + Nij; — (L’z])

To estimate the hyper-parameters, observe that the likelihood function is

1
L{nj, 25 N;, X;) = Hi]\il/o P[Xi; = x451035, i lp(0i517;, Aj)dOi;.
Under the model,
P[Xij = x450i5, ni5] = (Z”)H:}”(l — ;)"
ij
and 1
P03 15, ) = B (g, A)03 (1 — i)V,

where B stands for the Beta function. Therefore,

1 ..
L7 A NG, X)) = H?il/o <n”>B1(%&)97;””'_1(1—9@-)”*"“%’ldeij

ZL’ij

= I, <ZU) B™H (5, ) B(y; + g, A + nij — 24),
ij

The maximum likelihood estimates of v; and A;, denoted %; and ;\j, can easily be found
using a method such as the Newton-Raphson algorithm. For the tumor and normal colon
tissue data from [12], we fitted the Beta-binomial model for each sample separately, and
then for the combined data. Results are summarized in Table 2. The MLEs for v are
approximately equal across samples while the MLEs for A show a greater difference, with
the tumor tissue having a A value approximately 10% greater than the normal tissue. Despite
this small discrepancy in A, the density curves, shown in Figure 2, appear almost identical.
This suggests that little would be gained by specifying separate priors for the two samples
in this case.
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Figure 2: Prior Distribution Densities.
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The densities of the fitted prior distributions are given. These priors
are assumed to be i.i.d. across all sites in the data set used to fit
them.

To verify the fit of the model, based on the empirical distribution of n;;, we calculated
the expected empirical distribution of the observed methylation rates, defined as w;;/n;;,
based on the fitted beta model from the joint data, treating x;; as a random variable. For a
given n;;

1
P(X;j = xij|nij, 7, A) = / P[Xi; = 5|0, 0i5]p(0:5]7, A)db.
0

The probability for observing methylation rate ¢ = x;;/n;; is then found by taking the
weighted average over all pairs (z,n) such that /n = ¢. That is, if S, = {(x,n) : /n = ¢},
then the expected probability to observe ¢ in the sample given the empirical distribution of
Nij is

~

Ys, P(Xij = xij|nij, 7, N P(Nij = nij)

q

where P(N;; = n;;) is the probability of a site having n;; reads based on the empirical
distribution. This is then compared to the observed distribution of methylation rates. Figure
3 gives the shape of the distributions. The shape is similar to that of the curves in Figure
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Table 2: Maximum likelihood estimates of hyperparameter values.

Parameter Normal Tumor Combined
v 0.365518 0.359081 0.362389
A 0.550387 0.614117 0.582426

Estimates of the parameters for the prior distribution are given for
normal colon tissue data, tumor colon tissue data, and the combined
data set.

Figure 3: Theoretical and Observed Methylation Rates.
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Proportion of positive reads out of total reads (z;;/n;;) is given on
the x-axis. Number of sites matching a given proportion is shown on
the y-axis. The grey bars represent the observed data while the bars
with black diagonal stripes indicate the theoretical number given
the prior distribution for the underlying methylation rate and the
empirical distribution for the number of reads.

2, though it reflects the fact that the distribution of observed rates is discrete. The spikes
that occur near 0 and 1 in the plot are partially due to the large number of sites with small
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numbers of reads, which are highly constrained in terms of values they can take on. Overall,
the evidence shows that the model is a very good fit for the data.

2.2. Hypothesis Tests

Two different sets of hypotheses are considered. The first is a simple test of equality
Hy:0;1 =05 vs. Hy:0;1 # 0.
The second is a test of difference of rates given by
Hj |0 — Oia| < cvs. HYy :|0i1 — 0ia| > ¢

for some constant ¢. The second hypothesis is particularly interesting, as in practice, differ-
ential methylation is often called when the difference is substantial, e.g., c=0.2 [11].
Given 4;, A; the posterior distribution of the methylation rate is

0ij|(ij,mi;) ~ Beta(y; + i, Aj + nig — 245).
For convenience, we shall denote the posterior distribution as mgx n(f;;) in the following
context. For testing Hy : 0;; = 0;5 versus H; : 0;1 # 0,5, we define the posterior log odds as
follows:
7TO|X,N(91‘1 > ;)
1 — mox,N(0ir > 0i2)"

We reject Hy if |A;| > d,, where 4§, is the cutoff value corresponding to level a.

Given the prior distribution and the number of reads at a site for each sample, it is possible
to calculate the level () and power of the test for a given critical value (J,) analytically.
However, doing so for every combination of number of reads appearing in the sample would
be extremely computationally intensive. Here we estimate it using Monte Carlo simulations.
We first generate Monte-Carlo samples as follows:

A; = log[

1. Sample (n;;, n;2) pairs with replacement from the observed data. We sample the pairs
instead of individual n;;’s to account for possible dependence of reads count between
samples due to various factors including DNA sequence features.

2. Sample 0;; values for each site in each sample from the fitted prior distribution, i.e.,

~ ~

Beta(¥, ) from the combined data or Beta(9;, A;) from separate samples.
3. Generate x;; from Binomial(n;j, 6;;)

Two simulated data sets of size equal to the original data are generated. In one set, we

use Beta(4,\) to generate the 6;; values for both samples. For the second set, Beta (9, \)
is used only for the sites with equal 6;; values while the remaining sites are simulated using

the separate estimates from the normal and tumor tissues (i.e., Beta(9;, A;)). In both cases,
the first 100,000 sites are set so that #;; = ;5 while the remaining ones are allowed to vary.
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Table 3: Test of Equality

Simulation 1 Simulation 2

Critical ~ level power  Critical  level power

1 prior 2.5 0.1 0.518 2.5 0.1 0.522

1 prior 3.15 0.05 0.438 3.15 0.05 0.442

2 priors 2.5 0.1 0.524 2.5 0.1 0.522

2 priors 3.15 0.05 0.452 3.21 0.05 0.441
Fisher’s Exact .1 0.356 0.1 0.355
Fisher’s Exact 0.05 0.317 0.05 0.316

Simulation 1 used a single prior from the combined data set to
generate the methylation rates. Simulation 2 used the prior from
the combined data set to generate methylation rates for the subset
of the simulated data where the rates were set equal across tissue
samples, and used each sample’s individually calculated prior for
the remaining data points. The designations of 1 prior and 2 prior
refer to whether the combined data estimates of the parameters or
the individual tissue sample estimates were used in calculating the
log odds.

After the simulated data set is complete, the posterior log odds can be calculated for each
site. A suitable critical value can then be selected for a level a test by setting &, equal to
the 100(1 — a)th percentile of the absolute values of the log odds for the subset of sites with
0;1 = 0;5. Similarly, power can be estimated by taking the proportion of sites with 6;; # 0,9
with posterior log odds that have absolute values less than d,. In implementing this test for
the simulated data sets, rather than refitting the values of 4 and 5\, the values used in the
simulation were reused in calculating the posteriors. This is justified by the large size of the
data sets and the resultant accuracy and precision of the MLE.

Two versions of the test are conducted on each of the simulated data sets. The first uses
the combined estimates of the hyper-parameters, while the second uses the separate estimates
of the hyper-parameters for each of the two data sets. The results in this case indicate that
it makes little or no difference which way the priors are specified. This is not unexpected
since the two prior distributions were so similar. However, this might not generalize to all
cases if two specimens are markedly different in their methylation patterns. Table 3 shows
the approximate critical values for level 0.1 and 0.05 tests, and estimated power. Results
for Fisher’s exact test are also given for comparison. It should be cautioned that the critical
values given here depends on both the hyper-parameters and the distribution of read counts,
and hence are specific to this data set and should not be taken to be generally applicable.

For the test of difference, we define the posterior log odds that |0;; — ;2| > ¢ as follows,

Af = log[

2

7T9\X,N(|9i1 —0is] > ¢) }
1 - 7T9|X,N(|Qz'1 —Oin| > )"
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Table 4: Test of Differences

Critical Level Power
0.857 0.1 0.741
1.658 0.05 0.620

Critical values, level, and power for the test of differences of methy-
lation rates are reported with a ¢ = 0.2 as the null hypothesized
largest absolute difference. Test were done with a single prior on
simulated data using the prior fitted to the combined data.

Figure 4: Power versus Level.
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Power is shown on the y-axis and level on the x-axis. Values are
estimates based on simulated data.

As with the test of equality, a critical value for a given level «, and the corresponding power,
can be determined by simulations. A difference threshold of ¢ = 0.2 was chosen for the test,
which corresponds to the bin width for categorizing methylation rates used in other studies
(eg. Laurent et al., 2010, [11]). Simulations indicate greater power for the test of differences
than for the test of equality at a given level. Results are summarized in Table 4. The power
of all three tests is plotted against the level in Figure 4.
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Table 5: Hypotheses and True Values

Test Negative Test Positive Total
Hy Mo Mo M.
H, My My, M,
Total M.O M.l M__

The number of true negative, M,,, and true positives, M;,, com-
pared to the number testing as negative, My, and testing as posi-
tive, M. Only M, M., and M, are directly observed.

2.3. False Discovery Rate

Using the estimate of level, «, and power, 3, from the simulations, the false discovery rate
(FDR) can be estimated for the original data set. Let M,, be the number of sites, My, and M,
be the total number of true null and alternative hypotheses respectively. Let M,y and M
be the numbers of claimed negatives and positives. Table 5 tabulates four different incidents
incurred in hypothesis testing: true negatives (M), false natives (M), true positives (M),
and false positives (Mp;). Then

E[M,] = aMy, + My, = aMy, + (M., — Mo,).
This implies that M, can be estimated by
My, = (M — BM.]/[o — ]

The FDR is then estimated by

Since Moo, Moy, Mo, and My, are all functions of the specified level «, estimation of M,
and FDR requires an appropriate choice of a. For the real data, using the estimated o and (3
from the simulation studies presented in Figure 4, we calculated M, for a ranging from 0.1
to 0.0001. Interestingly, Mo, increased monotonically from around 740,000 to over 870,000
as the type I error level decreased from 0.1 to less than 0.0001. To determine which value
of v can lead to a most accurate estimate of M, , we simulated data sets containing 800,000
true nulls and 192,000 true alternatives where the methylation rate 0;; followed the prior
distribution fitted from the eB approach. The monotonicity, however, was not observed;
and M,, was estimated very accurately for any « value used in the same range. This likely
indicates some violations of model assumptions in the real data. We leave this as an open
question for future investigation.

In the absence of a reliable estimate of M,,, a precise estimate of FDR cannot be cal-
culated. The most conservative estimate of FDR can be obtained by substituting M., for
M, into the FDR formula. An FDR of 0.05 is achieved by setting the level as a = 0.00092,
at which M,; = 16,976 sites were identified as differentially methylated. In contrast, only
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5,003 sites were identified as differentially methylated at the same FDR using Fisher’s exact
test (the FDR was controlled by requiring the g-value of each individual hypothesis to be
< 0.05 using the QVALUE R package downloaded from http://www.bioconductor.org). The
eB test clearly shows improved power over Fisher’s test, however, the majority of the true
positive sites remain un-identified due to the limitation of small sample size (n;;).

The same method was applied to the test of difference (H|, : |0, — 02| < cvs. HYy :
|0;1 — 0;2| > c at ¢ = 0.20). An FDR< 0.05 was achieved at level 0.000088. A total of 1,630
sites were identified to have significantly pronounced difference (> 0.2) in methylation rates
between the two samples.

To gain further insights into the FDR behavior, in Figure 5, we plotted the FDR as a
function of the level summarized from the simulation studies described above. The proposed
eB method has a lower FDR than Fisher’s exact test at all levels less than 0.1. Since the
actual level of Fisher’s exact test is typically lower than the nominal level, we also plotted
the FDR vs actual level of Fisher’s exact test. The actual level was assessed in the same
way as for the eB approach, by finding the actual type I error rate in the simulated data
at each given nominal level. The posterior log odds test has a uniformly lower FDR than
the Fisher’s exact test even after the adjustment for the difference in nominal and actual
levels. In practice, as Fisher’s test is always performed under the nominal level while the
true level is never known, a comparison of the power or FDR under the nominal level is
more meaningful. A spreadsheet with the locations on the genome that tested as positive is
available at http://bioinfo.stats.northwestern.edu/~jzwang/.

3. Discussion

In this paper, we showed the two advantages of proposed empirical Bayes approach over
Fisher’s exact test in methylation differentiation studies. This method is particularly useful
when the number of reads at each site (or sample size) is small, while genome-wide data can
provide rich information regarding the methylation rates across sites. Indeed, as shown in
Figure 2, the fitted beta distribution has majority of probability mass concentrated around
0 and 1. This suggests that most sites have either very high or very low methylation rates.
This prior information tends to shrink the posterior distribution of ;; towards the two ends.
For example, if the observed z;; = 0 and n,;; = 2, then it is highly likely that this site has a
low methylation rate regardless of the small sample size, and vice versa. This strong prior
information forms the basis for the power improvement when using posterior log odds as the
test statistics.

Several possibilities exist for generalizations or refinements of this approach. Firstly, the
bias issue in estimation of My, needs further investigation. It is not clear to us whether there
is a causal relationship between the type I error level av and the bias. Secondly, currently all
sites are treated as independent. In a real genome, it is possible that sites nearby may be
correlated in methylation rate. Characterizing such dependence may help further improve
the power of the eB approach. Finally, only two tissue samples were used to generate the data
for this study; however, it will often be desirable to incorporate multiple specimens for each
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Figure 5: FDR versus Level.
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FDR is shown on the y-axis and level on the x-axis. The two curves
for Fisher’s exact test differ due to the overly conservative nature
of the test. Values are estimates based on simulated data. The
abbreviation “eB” stands for empirical Bayes.

condition. If methylation rates across specimens can be considered to be independent, then
the density of the vector of methylation rates will be a product of beta densities. Similarly,
the vector of positive reads will have probability mass given by the product of independent
binomial pmfs. Because of independence, the posterior density for the vector of methylation
rates will then be the product of beta densities, with the beta densities being the same as
the posteriors would be if each specimen were treated separately. Once this distribution is
known, the distribution of weighted averages of the methylation rates can be easily obtained.
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Abstract

In this study design, data consist of noisy observations of multiple copies of a DNA molecule
of interest. The main goal is to construct a physical map with lists of colors and positions.
The secondary goal is to estimate error rates and assess uncertainty in parameter estimations.
The existing maximum likelihood estimation (MLE) method works well when reasonably
large error rates were introduced. However, besides the difficulties due to incomplete and
unbounded likelihood, the MLE method does not provide an easily interpretable assessment
of uncertainty in the discrete parameter space of sequence of colors. In this paper, we propose
the Markov chain Monte Carlo (MCMC) and reversible jump MCMC methods to overcome
the difficulties in an MLE procedure and to search and evaluate the space of color sequences.
These methods are not only useful for this particular study design, but also important in
general to show how to combine discrete and continuous distributions and effectively apply
MCMC methods in a complicated situation.
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1. Introduction

Optical restriction mapping is a non-electrophoretic approach first developed by David
Schwartz and his colleagues in 1993 [18]. This method offers a strategy for restriction
mapping that overcomes many of the limitations of the conventional method and has been
widely accepted and used since then [17]. However, as it is pointed out by Laurie Mets et
al. (1999) [13], since the only information output of the original optical mapping method is
ordered fragment sizes, for the method to be useful, fragment sizes must be determined with
high accuracy, which is difficult to achieve and therefore limits the applications of optical
mapping. In contrast, the multi-color optical mapping procedure developing by Laurie Mets
and colleagues not only provides relative positions, but also distinguishes different recogni-
tion sites using distinct colors [15]. Therefore, more fuzzy fragment size measurement is
allowed since the additional color information greatly improves the accuracy in a physical
map construction [19].

The multi-color optical mapping method switches away from restriction sites as mapping
landmarks to more general DNA binding probes. Some distinct recognition sites with length
of 6 or 7 letters, such as CCTCTTT, are chosen. Fluorochromes (i.e. colored fluorescent
beads) are bound to probes to mark and locate the recognition sites along multiple copies of
the DNA molecule of interest, with each color corresponding to a different recognition site
or DNA word. Multiple copies of the DNA molecule of interest, with probes attached, are
spread and viewed with an optical microscope. The relative order and positions of colors are
determined and measured within the limits of resolution of the microscope. The main goal
is to construct a physical map with lists of recognition sites and positions from these noisy
observations.

The statistical problem of map estimation for the multi-color optical mapping method can
be thought either as a “multi-color” version of the map construction problem that has been
considered by Anantharaman et al. (1997) [1], Lee et al. (1998) [10], Parida (1998) [14], Karp
et al. (2000) [7] [8] and others, or as a continuous position version of the multiple sequence
alignment problem that has been considered by Feng & Doolittle (1987) [3], Lipman et al.
(1989) [11], Waterman (1995) [20] and many other researchers. However, as we explain
below, the major problems and concerns in a multi-color optical mapping are very different
from both cases.

One major issue in a “one-color” optical mapping design is the orientation uncertainty.
When the molecule is laid out on a surface, the left-to-right or right-to-left order is lost.
Though some elaborate biochemical methods can be used to determine the orientation, there
is still uncertainty. This issue also occurs in a multi-color optical mapping process. But, it
becomes much easier to handle due to the additional color information in the observations
[19]. However, the sequence of colors in a multi-color procedure also complicates the problem
and results in a very large discrete parameter space. Let ¢ be the number of distinct colors
(recognition sites), B be the sequence of colors and N be the number of sites on the underlying
true map. Then the sequence of colors B has ¢V possible values. Taking into account that
N is also unknown results in an even larger space. Thus, some of the major considerations
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in the analysis of the multi-color optical mapping data are completely different from those
in the one-color case.

In a traditional multiple sequence alignment problem, the distance between two adjacent
positions is usually unknown and therefore cannot affect an alignment. In addition, since
the sequences in comparison usually come from different sources, the final map is usually
constructed based on the assumption of evolution history. However, in a multi-color optical
mapping design, observations are multiple copies of the same DNA molecule of interest,
and the distances between adjacent colors can be determined under an optical microscope.
The additional distance information is important and must be considered in an optical
mapping since it can vary from several hundred base pairs (BP) to hundreds of thousands
BPs. Adding distance information becomes even more challenging when (unknown) scaling
of distance measurements varies from molecule to molecule.

The MLE method proposed by Tong et al. (2007) [19] has described a way for map
estimation given certain types of errors, which worked well to estimate a map with acceptable
error rates when reasonably large noises were introduced. However, the MLE does not
provide an easily interpretable assessment of uncertainty in the discrete parameter space
of sequence of colors, which can be easily addressed by a Bayesian model. In addition,
the Bayesian model provides an alternative of MLE for parameter estimation and can work
better in certain situations, especially when the unbounded likelihood becomes an issue. In
fact, the MLE procedure breaks down frequently when the error rates are as high as f,, = 0.3,
fp = 0.02, and 02 = 2, while the MCMC procedures are pretty stable.

This paper is structured as follows. In Methods section, the statistical model is described
and the prior probabilities on parameters and hidden variables of alignments are proposed.
Then the updating procedures for the MCMC and reversible jump MCMC are introduced. In
Results section, these two MCMC procedures are tested and compared with the MLE method
using simulated data sets based on the bacteriophage lambda genome, which contains about
50k nucleotide pairs along the linear double-stranded DNA molecule.

2. Methods

Two situations are considered to perform Bayesian inference using the MCMC method.
In the first situation, the number and sequence of colors, (IV, B), on the candidate map
is fixed and assumed to be the true value of the underlying map, which might or might
not be correct. The other parameters are then sampled from their posterior distributions
conditional on (NN, B) and observed data D. In this situation, estimations of the other
parameters can be calculated and compared with those from some other methods such as
MLE. In addition, Bayes factors can be computed to compare candidate maps, which can be
those inferred from some other procedures, such as those that are found to give the highest
several maximized likelihoods using the MLE method. In the second situation, a reversible
jump MCMC procedure is constructed to allow updating the values of (N, B). Comparing to
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the MLE method, the Bayesian model not only provides natural assessment of uncertainty
in parameter estimations, but eliminates computational issues due to incomplete likelihood
in the expectation step and the difficulties due to the unbounded likelihood problem in the
maximization step.

2.1. Notation

We use the same error models as those in Tong et al. (2007) [19]. To make this paper concise
but still easy for reading, only necessary notations and assumptions are introduced here.

The true (unknown) map is denoted by H = (hy,b1; ho,bo; -+ s hy,by; L), where N > 1
is the number of sites, L > 0 is the length of the map, and H and B are the corresponding
position and color sequences with H = (hy, ha, -+ ,hy), B = (by,ba, -+ ,by), where 0 < hy <
hy <--- < hy <L and b; € C. Here h; is the position of the t'" site on the map relative to
one end of the DNA molecule (where the map orientation is chosen so that position values
increase in the same direction on the map as on the oriented molecules), b, is the color of the
" site on the true map, and C is the set of possible colors. Assume there are M observations
D1,Dy, -+ , Dy, which are obtained from M independent copies of the DNA molecule with
true map H. Let m; be the number of observed sites on the j observation D;, where
Dj = (8j1,Cj15852,Cj2; "+ 3 Sjm,, Cjm;) includes position sequence S; = (sj1,82,°** , Sjm,),
0 =51 < 8jo <+ < 8jm, <00, and color sequence C; = (¢j1,Cj2,** , Cjm,), ¢;r € C. Here
s;i and ¢j; represent the observed position (relative to s;;) and color, respectively, of the ith
site on the j'" observation. In addition, assume that all the observations Dy, Dy, - - - , Dys can
be oriented relative to one another without error since it is not a major concern here [19].
Use 0 < aj < oo and 0 < f; < L — a;Sj,, to represent the scale and shift of the jth
observation D;. Then the standardized position s}, = a;s;; + 3; would allow positions from
different observations to be comparable.

2.2. Error Model

Assume that each site on D; aligns to at most one site on H, and each site on H aligns to at
most one site on D;. In addition, assume that (1) the false negative sites relative to the true
DNA molecule map are determined by independent Bernoulli trials, with the probability
of missing a site being 0 < f, < 1; (2) the standardized positions of false positive sites
appearing on the observed DNA molecule follow a Poisson process with rate f, > 0 and the
colors of false positives are independently and uniformly chosen from C; (3) the joint den-

, 2
sity of the standardized positions is f <s;ftl,s;?t2, e ,s;ftd > X exp {— Zfi (3}, — hr,> /202} .
j ¢ !

1{0 <sf <s& <---<s% <Ly, where d; is the number true positive sites on D;, t; <
Jty Jig J a;

ty <--- <ty are the indices for the set of true positive sites on D;, ry <1y <--- <7, are
the indices for their corresponding sites on the true map H and o? is the common variance.

There are two types of sites in each observation D;: either a true positive site meaning
that it is the manifestation of a site on the true map, or a false positive site meaning that it is
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not the manifestation of any site on the true map. Given an underlying map, true positive, as
well as false positive sites with standardized positions can be simulated according to the above
error model. Let the list of positions is denoted by sj;, -+, S’J'ij. The observed positions on
D; are then calculated by s;; = (s5, — ;) /a;, where ; = s%; and log(a;) ~ N(0,0.35%). For
simplicity and easy computation, allow —f;/a; < sj1 < 8j2 < ... < §jm; < (L — 3;)/c; in
the model although in the data we always have 0 = s;; < 550 < ... < 855, < (L — 3;)/0;.

The “aliasing” error (a color is misspecified as another) is not modeled because it is
expected to occur at a low enough rate that each instance can be accounted for as a com-
bination of a false positive and a false negative. There are two other scenarios that might
happen for a long entangled genome. First, the observed sequence of colors may not be
in correct order. Second, the observed sequence might be a fragment that is much shorter
than the true map. These two scenarios are not considered here since they are not likely to
happen for a short simple genome, such as the bacteriophage lambda genome we use in the
simulation study.

2.3. Hidden Variables

The (hidden) alignment variables are defined as follows. For j =1,2,--- M, t=1,2,--- /N,
let W;; = 1, if the " site on the map H is observed on the j* observation D;; W, = 0,
otherwise. If Wj, = 1, define @);; as the observed position (before standardization) on D;
for the ' site of H; if W;; = 0, define Q;; = Qj;_1. For simplicity, we have the convention:
Qjo = —fB;j/;. Since, under the model, the observed sites are in correct order, we must
have —f3;/a; < Qj1 < Q2 < --- < Q;n < (L —f))/ay, for each j =1,2,--- M. From the
definition of W and @) and the modelling assumptions above, it can be verified that for each
J, {Wj, Qi) }1<i<n is a Markov Chain.

2.4. Prior Distributions

The complete set of model parameters includes L, f,, f,, 0%, a1, -+ ,an, Biy-++ B, N,
bi,-++, by, h1, -+ ,hy. In order to obtain an identifiable parameterization, we must fix one
of the following parameters: map length L, false positive rate f,, variance o2, and scale
parameters aq, - - -, ays. For computational reasons, we choose to fix L and re-scale all the
positions on the j observation by multiplying by the factor L/ Sm;, which ensures the new
scale a; € (0,1), 1 < j < M. Consider the following priors.

1. The false positive rate f, follows Gamma (a,,b,). In practice, a convenient choice is
to set a, = b, = \/Mypin/L, where my,;, = min;{m;} is the minimum number of sites
on an observation.

,b,). In practice, if a rough estimate for f,

2. The false negative rate f, follows Beta (a, pract;
1,0, = (1= f,)/ fn. Otherwise, let a,, = b, = 1.

is available and denoted by fn, let a, =1,
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3. The common variance ¢ follows Inverse Gamma (a,, by). In practice, use a, = b, =
1/(56), where ¢ is an estimate (not necessarily accurate) for o. From our MCMC
practice, it seems robust when choosing different a, and b, as long as they are not too
large.

4. The scale parameters aj, ag, - -+ , ayy are i.i.d. Beta (aq,bs). The choice for a, and b,
is similar to a,, and b,,.

5. The shift parameters (3, 2, - - -, Bas are i.i.d. Uniform (0, L). Note that the likelihood
will be 0 when 3; > L — ;8-

6. The number of sites N on map H follows a Poison distribution with mean Ay. In
practice, let Ay be the average number of sites on all observations divided by the map

length L.

7. The positions (hy, hy, -+ , hy) are the order statistics of i.i.d. Uniform (0, L) random
variables.

8. The color b, at the ¢ site, t = 1,--- , N, is uniformly chosen from C, the set of colors.

Note that the choice of those prior distributions is mainly for computational convenience
and assumes no knowledge about the true underlying model. These priors should be rea-
sonable but do not have to be consistent with the true underlying model. In fact, though
we assume a prior distribution for each of the parameter in the estimation procedure, but
in the true model used for simulation, some parameters are simply unknown constants,
such as f,, f,, and o?; some are obtained from real data with unknown distributions, such
as N, hy,--- ,hy, by, ,by; some have completely different distributions, for example,
aq, - -+, ayp are generated from a lognormal distribution in the simulation but are assumed
a beta distribution in the estimation.

2.5. MCMC Updating Procedures, Given N and B

We fix N and B = (by, by, - - - , by) throughout this subsection. Given initial values for all the
other parameters 0 = (f,, fn, 0%, a1, ,anr, Bi,- +, Bu, b1, -+ -, hy) and hidden variables
w and ¢, update the following sequentially.

1. The alignments w and ¢ by a Metropolis-Hastings sampling strategy [12]. the idea
here is to propose new values of w and ¢ based on the approximation of the transition
probability functions that are easy to compute [19]. Then adjust using acceptance
ratio for a correct distribution. Since the approximation is really close to the exact
ones, the acceptance ratio is high in general.

2. The false positive rate f, and false negative rate f,, by the full conditional distribu-
tions [4].
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3. The variance o by a Metropolis-Hastings step since the full conditional distribution
of 02 is hard to obtain directly.

4. The j™ scale ; and shift 3; by a small or big step. In this step, we first propose a
probability distribution to decide which observation to be updated. Then, to update
the scale oj, we propose a Beta distribution according to the deviations of aligned sites
on D;, where the deviation is defined to be the difference between the standardized
observed position and the corresponding true position. If most of the deviations are
positive, we will have more probability to propose a smaller scale, and vise versa.
Finally, to update 3}, in a small step we use the current available alignment information
to propose a new value of 3;, while in a big step we propose a new value of 3; according
to a uniform distribution.

5. The t'" position h; by a small or big step. Similarly to the updating of shift parameters,
in a small step, the new value of h; is proposed according to the current available
alignment information, while in a big step when the current alignment is not reliable
the new value of h; is sampled from a uniform distribution.

The details of the above updating process are described in Appendix (section 2).

2.6. The Bayes Factor

Consider two different sequences of colors (N1, By) and (Na, By). If D denotes the actual ob-
servations and Pr{D|N;, B;} denotes the conditional probability distribution of observations
under color sequence (N;, B;), i = 1,2, the Bayes factor BF = Pr{D|Ny, By }/Pr{D|N, By}
provides the relative weight of evidence for the sequence (N, B;) compared to the sequence
(N2, Bo) [5]. Since Pr{D|N;, B;} is not available explicitly, it must be computed as a
marginalization by integrating over parameters 6. Specifically, since

1 B Pr{60,W,Q|D, N;, B;}
Pr{D| N;,B;} — Pr{0,W,Q,D|N;, B;}
Pr{0,W,Q|D, N;, B;}Pr{0|N;, B;}

/966 Pr{0,W,Q,D|N;, B;}
Pr{6,W,Q|D, N;, B;}
/ee@ Pr{W,Q,D|0, N;, B;}

do

a6,
and we are able to sample 6, Wy and Q) from distribution Pr{6, W,Q|D, N;, B;} using
MCMC (see Appendix, section 2), then

n- NWQ
Yone1 L/L(O(K); D, way, quiey)

where L(0(k); D, wu), qu)) is the complete data likelihood and can be calculated using for-
mula (1) in Appendix (section 1), and Ny is the number of all possible alignments, given

Pr{D|N;, B;} ~ (2.1)
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D and (N;, B;). The calculation of Ny is similar to the calculation of likelihood with back-
ward and forward variables, except that now the complete data likelihood is the constant
1.

2.7. Reversible Jump MCMC to Update N and B

When variation in N and B is allowed, the parameter space is no longer constant. In this
situation, the reversible jump MCMC strategy can be used to account for discrepancies in
parameter space [6]. In this subsection, we propose such a reversible jump MCMC procedure
to directly estimate the posterior probabilities for N and B.

Consider the step to update a position. Some possible transitions are: (1) Type U:
update h; to hf, and keep N and b; unchanged; (2) Type B: “birth” of a randomly chosen
color at a randomly chosen site; (3) Type D: “death” of a randomly chosen site. Let u}, b},
and dj, be the probabilities for types U, B and D transition from the k™ to the k + 1% steps
of the sampler. Suppose N,,q and N,,;, are the maximum and minimum values for N. Let
0<d<land 0 < p <1 be constants. Use N; to denote the number of sites on a candidate
map at step k. Let uj, = §. In addition, if Ny, < Nip < Nipaw, let 0 = (1 — 6)p and

= (1—=0)(1—p); if Ny = Ny, let b, =1 —06 and dj, = 0; if Ny = Nyaa, let b, =0
and dj, = 1 — 0. Randomly select the transition type using u;, b} and dj, to update from
(Ni, Br, Hi, Wi, Qi) to (Nis1, Brgrs Hir, Wit Qi)

If a transition type U is chosen, then the updating procedure for a specific position and
the related alignments has been described in Appendix (subsection 2.5). If a transition type
B is chosen, we describe in Appendix (section 3) how to decide the color, position, and
corresponding alignments, and how to calculate the acceptance ratio. If a transition type D
is chosen, the site (b;, h;) and corresponding alignments (w;;, g;;) are simply deleted. The
acceptance ratio has the same form as the one for a type B transition, with appropriate
change of labelling of the variables, and the ratio terms inverted.

3. Results

3.1. Data Simulation

Bacteriophage lambda was originally discovered from E. coli in 1953 by E. Lederberg and
J. Lederberg [9]. It has been a very important tool in the study of molecular biology since
then. The bacteriophage lambda genome has a linear genetic and physical map, sometimes
presented in circular representation because the molecule circularizes at the cohesive ends
during some stages of its life circle. The total genome size is 48,502 base pairs. The genome
sequence is obtained from Gen Bank, with accession number # NC_001416. The recognition
sites and their corresponding colors are defined in Table 1. The total number of occurrences
summed across all these colors in the lambda genome is 26.

108



L. Tong Bayesian Methods in Multi-Color Optical Mapping

Table 1: Recognition Sites and Colors

Name Recognition Site Shape
I TTTTCCC or CCCTTTT circle
J TTTCTCC or CCTCTTT diamond
K TTCTTCC or CCTTCTT triangle
M TTCTCTC or CTCTCTT Cross

The underlying true map is obtained by by considering the bacteriophage lambda genome
sequence from base pairs 1 to 28,502 (out of 48,502 total base pairs), which includes 9
recognition sites. We re-scale the positions and fix the map length to be L = 100 throughout
this paper. Twenty observations are generated using the error model described in subsection
2.2, with f, = 0.3, f, = 0.02, and ¢ = 1.0. With these values, the expected number of
true positive sites per observation is 6.3, the expected number of false positive sites per
observation is 2, and the expected number of false negative sites per observation is 2.7. We
also did simulation studies for some other choices of parameter values. The conclusion is
similar. Since in practice the above parameter values are expected to be about the same,
only results for the above values are listed and discussed in the following.

3.2. Map Position, Scale, Shift and Error Parameter Estimates

In this subsection, consider the Bayesian approach in which the number of sites N and the
sequence of colors B are fixed to be its true value. All the other parameters are updated
according to the Gibbs and M-H prodecures in subsection 2.5. The run length of the MCMC
is 10,000 iterations and the first 2000 are discarded for the analysis. The actual acceptance
ratio for o updating is 0.987, for the position updating is 0.500, and for the scale and shift
updating is 0.112.

Figure 1 shows the sequence of sampled parameter values across the MCMC iterations in
the left-hand column and a histogram of the posterior sample distributions in the right-hand
column, for the error parameters f,, f, and o. The plots suggest that this MCMC mixes
reasonably well at least for the error parameters. In addition, we see that the posterior
sample distributions for these parameters are approximately symmetric, with center close
to the true values. Compared to the MLE estimates (0.03,0.36,0.46) for (f,, fn,0), the
posterior sample means (0.022,0.301,0.940) are much closer to the true parameter values
(0.02,0.3,1.0).

The results for posterior positions are showed in the MCMC columns in Tables 2. Because
the ends of the molecule are poorly estimated, to make the estimates for positions and shifts
comparable, consider estimates of hy, Ah; = hy — hy—q for 2 <t < N =9 and L — hg in
Table 2. To make them comparable, the j row () in the “true” and “MLE” columns are
adjusted by multiplying L/s;,,, for 1 < j < M, as what is done in the MCMC procedures.
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Figure 1: MCMC Iterations and Posterior Distributions of Error Parameters. The number
of sites N and sequence of colors B on the map H are fixed. The true values of the error
parameters are: f, = 0.02, f, = 0.3, 0 = 1; the posterior means are: fp = 0.022, f, =
0.301,6 = 0.940; and the MLE are: fp = 0.03,f, = 0.36, 6 = 0.46.
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From Table 2, we see that the MCMC estimates for positions tend to be closer to the true
values than the MLEs do, especially when the distances between two consecutive sites are
close (e.g. Ahy and Ahg). In addition to reflecting genuine differences between the MLE and
Bayesian approaches, this could also be related to approximations, valid for o small relative
to Ahy, that were used in the MLE but not the Bayesian procedure. The posterior means
for scales and relative shifts and are also close to their true values (results not shown).

Table 2: Position Comparisons of True, MLE, MCMC and Jump MCMCs

MCMC Jump I Jump II Jump I1I
True MLE mean (s.d.) mean (s.d.) mean (s.d.) mean (s.d.)
hi 1107 12.06  9.77 (0.70)  8.50 (0.76) 10.55 (0.46) 11.01 (0.63)
Ahy 2814 27.89 28.85(0.47) 29.47 (0.50) 28.60 (0.46) 28.26 (0.61)
Ahy 1410 1334 14.09 (0.43) 14.21 (0.51) 14.01 (0.42) 13.90 (0.43)
Ahy 037 135  0.65(0.42) 0.74 (0.40)  0.61 (0.40)  0.61 (0.36)
Ahs  10.69 10.60 10.90 (0.39) 11.05 (0.47) 10.82 (0.41) 10.75 (0.39)
Ahg 2318 23.19 23.58 (0.48) 23.86 (0.39) 23.45 (0.40) 23.22 (0.45)
ANhy 7.01 596 6.86 (0.48) 6.94 (0.34) 6.72 (0.37)  6.65 (0.39)
Ahs 030 077 027(0.25) 0.33(0.26) 0.27 (0.23)  0.25 (0.23)
Ahy  3.66 265 3.84 (0.47) 3.94 (0.50) 3.95 (0.45)  3.88 (0.45)
L—he 148 219 118(0.63) 0.90 (0.47) 0.88 (0.54) 1.36 (0.62)

3.3. Bayes Factors for the Candidate Sequences of Colors

To assess the relative weight of evidence for different sequences of colors (N, B) using the
Bayes factors, choose the sequences of colors with the top 4 profile likelihood values from
the maximum likelihood procedure described by Tong et al., 2007 [19]. The run length of
the MCMC is 10000 iterations and the first 2000 are discarded for the analysis. Table 3
lists the values of the log Bayes factors (BF), the posterior means and s.d.’s of the error
parameters f,, f, and o (with sequence of colors fixed). The log(BF) column are the values
of log Pr{D|N;, B;} — log Pr{D|N, B}, where (N;, B;) is the top i candidate sequence of
colors, and N, B is the true sequence of colors.

The first sequence of colors is the same as the true sequence of colors. Therefore, we
should have log Pr{D|Ny, B1} — log Pr{D|N, B} = 0. Our actual value in Table 3 for this
quantity is —0.11, which is a little bit different from 0. This could be an effect of small
number of MCMC iterations. The values of Bayes factor for these four maps decrease and
the posterior means for error parameters ( f,, f,,) increase. From more detailed check of these
maps, note that the number of sites for these four candidate maps are 9, 10, 11, 12 (from
the best to the fourth best). Therefore, higher posterior means for f, are expected when
taking them as candidate maps. Meanwhile, this high probability for false negatives could
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Table 3: Log Bayes Factors for the Top 4 Sequences of Colors

log L(6; D) log(BF)  f, (s.d.) fp (s.d.) o (s.d.)
12423 011 031 (0.040) 0.022 (0.0038) 093 (0.092)
437.85  -11.78  0.39 (0.041) 0.023 (0.0042) 0.88 (0.096)
-439.64 -13.10  0.40 (0.045) 0.031 (0.0082) 0.82 (0.101)
441.04  -38.09  0.49 (0.053) 0.094 (0.0104) 0.89 (0.300)

S R R

introduce more variability in the posterior samples of other parameters.

3.4. Reversible Jump MCMC

In this subsection, all the parameters, including number of sites N and sequence of colors B,
are subject to updating. The reversible jump MCMC is able to give posterior distributions
for the parameters that take into account the uncertainty in (/V,B). Thus, it would be of
interest to compare those with the posterior distributions of parameters from MCMC with
(N,B) fixed and with the sampling distributions from MLE.

We run three separate reversible jump chains, in which the starting values of (N, B, H) are
based on the first (Jump I), second (Jump II) and third observation (Jump III) respectively.
All the staring values for the other parameters are obtained from the pairwise comparison
method described in Tong et al. (2007) [19]. Then the map, observations and related
parameters are re-scaled to make L = 100. The length of the first jump MCMC is 10,000
iterations, and the length for each of the other two is 20,000 iterations. The first 20% are
discarded for the analysis. In all three of these jump MCMCs, the true sequence of colors
is found quickly (within 2000 iterations), and the chain stays close to the true sequence of
colors stably thereafter. The three maps used as starting points for the 3 jump chains (after
adjustment for scale and shift obtained from pairwise comparison) are shown and compared
with the true map in Figure 2. Note that all three starting maps deviate from the true map
in both sequence of colors and positions.

The reversible jump MCMC turns out to be surprisingly successful in estimating pa-
rameters, especially sequence of colors. The posterior probabilities for the true sequence of
colors in these 3 reversible jump MCMC are 93.2%, 98.0% and 97.0%, respectively. The
posterior sample means and standard deviations for the error parameters f,, f, and o are
listed in Table 4, where the “partial” column considers the iterations with true sequence
of colors only and the “all” column considers all the iterations. Table 4 shows very similar
posterior means and standard deviations for error parameters using MCMC with N and
B fixed to their true values, and using any one of the three jump chains, both when all
iterations are used and when only those having the most likely sequence of colors (N, B) are
used. This suggests that the posterior distributions of (f,, f,, o) are stable. Notice that the
standard deviations for the partial set of iterations are uniformly smaller than the standard
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Three Observations and True Map

< o S B o0 XG>
I ROk Cal 2 RECECERERE OO - Q- XN
N pocesese OO KO WO X - - -
T O X---mnee- A-oneo-s R X-EHEK - -

Figure 2: The Three Starting Maps, Compared with True Map. The first line (solid) shows
the true map. The remaining lines (dotted) show the first 3 observations (after adjustment
for scale and shift that are obtained from pairwise comparison), which are used as the starting
maps in jump MCMC I, IT and III, respectively.
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deviations for the full set of iterations, which is reasonable because the uncertainty in N
and B would increase the uncertainty in the posterior distributions of (f,, f,, o). Table 2
also gives the posterior means and standard deviations of positions using partial iterations of
reversible jump MCMC, which have very similar results to the posterior means and standard
deviations using iterations of MCMC when N and B are fixed.

Table 4: Estimates of Error Parameters in Reversible Jump MCMC

True MCMC Jump I Jump II Jump III

all  partial all  partial all  partial
fp=0.02 | mean 0.022 0.022 0.022 0.022 0.022 0.022  0.022
s.d. 0.004 0.004 0.004 0.004 0.004 0.004 0.004
fn=03 | mean 0.301 0.311 0.307 0.299 0.297 0.301  0.299
s.d. 0.038 0.042 0.039 0.039 0.038 0.041  0.039
oc=10 | mean 0.924 0.977 0968 0.947 0946 0.942  0.939
s.d. 0.098  0.100 0.095 0.087  0.087 0.104 0.103

4. Discussion

In this paper, we have proposed the Bayesian method to estimate the underlying physical
map of a DNA molecule and the corresponding error rates, using the multi-color optical
mapping data.

There are two situations when the MCMC strategies can be used. First, if there are
candidate maps already, which might be obtained from MLE or some other methods, the
regular MCMC method assuming fixed N and B can be used to refined these candidate
maps, to compare them and to estimate error rates. Second, if a candidate map shall be
inferred from observed molecules, the reversible jump MCMC can be used to search for a
map and to estimate other parameters.

The maximum likelihood inference works well with reasonably high error rates, and mild
violations to model assumptions. However, there are some considerations and concerns still
left. First, the MLE method may not be able to find a non-singular solution when the true
error rates are high. Second, the MLE method can not assess uncertainty in some of the
parameter estimates since the parameter space itself changes.

The Bayesian method uses the exact log likelihood (although the MCMC method itself is
of course, always approximate) and is able to assess the uncertainty of N and B (number of
sites and sequence of colors on the map H) using the marginal posterior distribution or Bayes
factors. However, like all the other Bayesian methods [5], this one also requires intensive
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computation, which makes it practically difficult when M (number of observations) and m;
(number of sites on D;) are large.

Therefore, one realistic way is to first use likelihood based inference when M and m;s
are large. Then use the MCMC methods for a subset of the whole map, such as our analysis
only considering the first 9 sites on the lambda genome, to refine and verify the parameter
values.

In the case when the observed sequences of colors may not be in the correct order, our
hidden Markov and MCMC models should be adjusted to allow for mild crossover (within
the limit of resolution). One more difficult problem is to construct a physical map from
observations of multiple overlapping fragments, instead of complete genome copies, with
orientations and amount of overlap not completely known. In this situation, the indicators
for alignment variables do not necessarily start from 1 or end at N. We could in principle
think the starting and ending indicators as parameters or hidden variables in the model.
This could be a topic of future work.
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Appendix

1. Complete-Data Log Likelihood Function

Let (D, w,q) denote the complete data, where D = (D1, Dy, -+ , D), w = (wy, -+, wy)
and ¢ = (q1,- -+ ,qum), with w; = (wj1,- -+ ,wjn), ¢j = (g1, ,q;n), where w;; is a real-

ization of W;; and gj; is a realization of @);;. The complete-data log likelihood function is
log L(0; D, w, q) = Z;‘il log L(0; D;, w;, q;), where

N N N
log L(6; Dy, wyq;) = (my— Y wir)log fy — foL+ Y wirlog(l— fo) + > (1 —wy)log f,
t=1 t=1 t=1
N 1 N
+m;log a; — Z wjtlogo — ) Z wie(cqe + B — he)®
t=1 t=1

—~
—_
~—

N
- Z wj; log(vV2m) 4+ log C(H, L,w;, o)
t=1

provided all the following hold: (1) w;; € {0,1} for each 1 <t < N; (2) —f;/a; < g1

. S qiN S L;—ﬂ], (3) qj1 = —ﬁj/Oéj if wj1 = O, and 4t = qjt—1 if Wi = 0 and 2
t < N; (4) qiv € {—=Bj/aj, 851, -+ ,8jm,} for each 1 <t < N; (5) —B/a < s5; < 55

. < 8jm; < (L —B;)/a;. If any of these conditions fail to hold then the likelihood i
0. Here, C(H, L, wj,0) is a normalizing factor and can be calculated as C(H, L,w;,0) =
PIOSX; <X <o < Xy, < L}]~! where X; ~ N(h,,,0?) independently, 1 < i < d;,
where d; = Zf;l wjs, and 11,79, -+, rg, are the values of ¢ when wy; = 1. If d; = 0, then
C(H,L,wj,0)=1.

VAN VANRVAN

wn

2. MCMC Updating Procedures, Given N and B

Use P(A) to denote the probability measure evaluated at event A and Pr(-), here and after,
as a notation for probability measure functions of discrete random variables, for probability
densities of continuous random variables and for products of these. At each step, write the
current parameter and alignment values to be #, w and ¢, and the proposed ones to be 6%,
w* and ¢*, which might or might not be accepted according to the acceptance ratio.

2.1. Update alignment variables

We first construct an observation sequence {Yji}i<i<ni1, j = 1,---, M, of the latent-
variable Markov chain purely for computational convenience [19]. Then define the ob-

117



L. Tong Bayesian Methods in Multi-Color Optical Mapping

servation distributions bj(u,v;2) = Pr(Y;|Qj—1 = u,Q;y = v,Wj;; = z), the transition
probability distributions a;,(u,v;2) = P(Qjm1 = v, Wj41 = 2|Q; = u) and the initial
distribution 7;(u, 2) = P(Qj; = u,W;; = z). Following the approach due to Baum et al.
(1970) [2] and described in Rabiner (1989) [16], we are able to find formulas to calculate
the forward variable n;(u, z) = Pr(Yji,---,Yj;Q;u = u|/Wj, = z) and backward variable
Tit(u, 2) = Pr(Yjen, - Yina Wy = 2, Q5 = u).

For each j = 1,2,---, M, propose new alignment variables (W7, Q3,), ---, (Wiy, Qjy)
as follows. When t = 1 and w € {51, -, 8jm, },

nj1(u, 1) 751 (w)
> o (i (w, 0) + mj (u, 1)) 75 (u)
x x Hu = sjo}nj1(sj0,0)751(850)
A = W = O30} = o s 0,0) -+ . ) () )

When t =2,--- N and u,v € {sj1, " ,Sjm, },

P{Q;, =u, W}, =1|D;,0} =

T (v
PO = 0, Wh = 1@y =Dy, 0} = aye(u,v: 1) by, v 1) - —240)

Tjatfl(u)
* * * Tit\U
PAQH = 0.5, = 0@y = D30} = 1o =} fy- ) ®)
ijtfl(u)
Assume that the proposed values are q;f = (Q;ﬁa . ,q;N) and wj — (w;‘h . 7“’%)- The

acceptance ratio is

rj(w,q) =minq 1, . . — .
L{Q;Djijvqj'} P{Qj:qj>m/j :wj|Dj’9}
where the first ratio is the complete data likelihood ratio for the j** observation, which can
be calculated using (1), and the second ratio becomes

* * N * * *
P{Q5 = ¢, W) = wi|D;, 0} ¢ PAQS: = 4je, Wi = w;e| Q51 = ¢je-1, D5, 0}
P{Q;1 =, Wﬁ = w;ﬂDjv 0} Py P{Q;t = @y VV;}, = w;'(t‘@;ftfl = thflvpﬁ 0}

which can be calculated using (2)-(3). Note that rj(w,q) = 1 if aj(u,v;2) is the exact
transition probability function.

2.2.  Update false positive and false negative rates

The new values f; and f; are sampled independently from their corresponding full condi-
tional distribution and accepted with probability 1, where

fy ~ Gamma (Z m; — Z ijt + ap, b,/ (M Lb, + 1))
J J ot

and

fr ~ Beta (ZZ(l—wjt)—i—an,ZZwﬁ—i—bn).
it it
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2.3. Update common variance

Sample the new variance o*? according to Inverse Gamma (g1, g), where g1 = 7. 37, wji /2+
ay, and gy = Zj o, wir(aygie + B; — he)?/2 + b,), and accept with probability

r(o) = min {1,HC’(H,L,wj,a*)/C(H,L,wj,a)} .

i=1

2.4. Update scale, shift and related alignments

Since we want the probability to update a; and ; to be high when the alignment between
the j* observation and candidate map is bad, that is, there are few aligned sites, and vice
versa, then let

>l —wp) +1
Zj > (L —wy) + M

We correct the probability by adding number 1 both on the numerator and denominator
because we want to have a non-zero probability to update the scale and shift when all the
sites on the candidate map find matched sites on an observation. .

Let K = [%F] and define 8; = >, wji(he — ajqse) />, wje if o, wje > 0, B; = 0 oth-
erwise; I;; = 1 if wy(ojqe + B — he) > 0, Iy = 0 if wj(ajge + 85 — ) =0, I;; = —1
if wie(oyqse + BJ he) < 0; a1 = oy (N+Zl<t<K — D K<t<N Jt) (Zt M t‘) /N, and

az = (1—ay) (N - Dacier Lit + D g<ien L) <Zt 1 |Ijt|> /N. Let a; and o} represent the

current and proposed scale respectively. Consider the simple situation When Qo = by =
(uniform prior). From intuition, we want o ~ a; when 3\ p Ljt = Doy Lin; o < o
when 37 g Lt — Pgcren it < 05 0f > oy when 371 It — 3 ecpen it > 0. At the
same time, we believe the larger the Zt w;;, the more reliable the current ;. Then the
following proposal is suggested to obtain a7,

P{select the j™ scale and shift to update}

(4)

when a; < 0.5 : aj ~ Beta <a1 +aa,z | L] — a1 + ba> ,
¢

when a; > 0.5 : aj ~ Beta (Z Lt — as + aq, a2 + ba> . (5)
t

Let M, denote the mode of this distribution. Then M, = a; when >, ;o5 Lit = D jecien Ljts
M, < o when 37 e it = cpen Lt < 03 and My > o when 30y Tie— 3 ecpen 1t >
0.

To update the current shift J; to a new shift 57 conditional on new scale o}, consider two
cases. When most of the sites on the candidate map find matched sites on the 7! observation,
that is, ), wj, is large, one tends to use the current available alignment information to update
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shift, which is called a small step; otherwise, when ), wj; is small, the current alignment
information would not be reliable, then it would be better off trying a uniform distribution
within the region defined by the constraint 0 < 57 < L — ajs;n, for all j, which is called a
big step. When ), wj, > C (C' is some positive constant), propose a small step

> wit(hy — afqj) o )
> Wit ’ > Wit
truncated to have 0 < 5; < L — a;Sjmj. When », wj; < C, we need a big step. Let
T=A{t:0<h— &g < L —ajsjm;, 1 <t < N}. Suppose there are np elements in 7.
Then sort iy — g, t € T, in ascending order. We get (ng + 1) intervals with left end 0
and right end L — s, Let the probability to choose one specific interval be 1/(ng + 1),

and use uniform distribution on this interval to obtain /.

The new alignments ( o ;t), t = 1,2,---,N, between the j* observation and the

candidate map conditional on o} and (3 are proposed by distributions (2) and (3). The
acceptance ratio for the proposed value o}, 37, w; and gj is

rj(awngv(Z) = min{17f1 : f? . f3}7
where f; is the complete date likelihood ratio with
L(a;faﬁ;ﬁ%pij;ﬂ;)
L(a, B,0-; Dy, wj, q;)

Oé;( an—1 1— Oé;( ba—1
f2 =\ — 1 )

O[j — O[j

and f3 is the proposal ratio with
> (1 —wj) +1 ' Zj Yol —wj)+ M . Pr(ajlas, 0-, w5, q5)

Zj Zt(l_w;t)"i‘M >l —wp) +1 Pr(a;’aﬁeﬂwﬁ%’)
.Pr(ﬁj‘&jaefaw;;qu) ) P(Q; = Qjawf = wj‘D]Waj?ﬁjaef)
Pr(ﬁ;‘a;70—7w]7qy) P(Q;k - q;JW;k - w;{|Dj7Oé;k7ﬂ;k76—)

5o~ N )

fi=

f2 is the prior ratio with

fs =

Here 6_ denotes parameters other than a; and 3;, Pr(aj|ay, 0, w;, g;) is one of the densities
in (5) depending on the value of a;, and Pr(8|a}, 0, w;,q;) is either the density function
of (6) or 1 (uniform). Likewise, the values of Pr(a;|aj,0_,w},q;) and Pr(B;la;, 0-, w5, q;)
can be calculated.

2.5.  Update position

First, choose the ! position to update according to alignment information. Let

> (1 —wj) +1
Zj >l —wp)+ N

P{select the t'" position to update} =

120



L. Tong Bayesian Methods in Multi-Color Optical Mapping

To update the current position h; to a new position Ay, consider two cases again. When
the ' site on the candidate map finds a matched site on most of the observations, that
is, Y. Wyt 18 large, one tends to use the current available alignment information to update
position, which is a small step; otherwise, when Zj wj; is small, the current alignment
information would be not reliable, then it would be better off trying a uniform distribution
within the support of position h;, which is a big step. When ) jwir >C (C' is some positive
constant), we have a small step

. > wielagge + 6;)  o?
ht ~ N( J Zj Wit ,Zj wﬁ) (8)

truncated to have 0 < hy—y < hy < hyyr < L. When Ej w; < C, we need a big step.

For the j™ observation, consider those positions with indicator 4, i = 1,--- ,m;, that satisfy
Sji € [qji-1,qv], where ' = min{k : &k > t + 1(wj; = 1}. Standardize those positions to
s5; = ;55 + ;. Then further choose those that satisfy s7; € [hs—1, ht11] (define hg = 0 and
hny1 = L). Suppose there are k positions. Then hy_1,5;,,, -, Sji,+k—1, a1 form (k + 1)
consecutive intervals. Let the probability to choose a specific interval be 1/(k + 1), and use
uniform distribution on the chosen interval to obtain h;. The acceptance ratio for the new
position A} is

r(ht) = min M C(H", L,wj,0) exp{ wjt(ogjt + B — hy) /2‘72} Pr(hy/hi,w,q,D,0-)
' C(H,L,'UJ]‘,O') exp{ w_]t(a]qjt +ﬁj - ht)2/202} Pr(h*/htaw QaD 0 )

Here 6_ denotes the parameters other than h,. The value of Pr(h}/h;,w,q,D,0_) is the
density of (8) or of the uniform distribution in the big step. Likewise, we may calculate

Pr(hi/h;, w,q,D,0_).

3. Type B Transition in the Reversible Jump MCMC
Choose to add a new color before the ' site with probability

Zj]\/il Vjt + 1
N M
Zt:l Zj:l V}t + N

t=1,2,---,N + 1, where artificially define the N + 1¢ site on map H to be at position L
and Q;n+1 = (L —0;)/c;. Here V}, is defined as the number of observed sites between Q1
and ()j; (ends excluded) on observation D;. To decide which color to be added between h;_4
and hy, let Vii(c), ¢ € C, be the number of observed sites with color ¢ between (;;—; and
Qj:+ (ends excluded) and the probability to choose a color ¢ is

Pt =

R Vie(e) + 1 |
; céC(Zj 1VJt() >
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To decide the position h; of this new site with color b; = ¢, use the big step strategy described
in the subsubsection 2.5.5. Let us clarify notations: Nyy1 = Ny +1, Bryr = (b, -+, b1, b,
be,- -+, ka)v Hipr = (hayo oo hea, By g, e 7hNk)7 (wj>k+1 = (wjlv Ty Wit-1, w;w Wity * "y
win,), and (g;)k+1 = (g1, 5 Qje—1, Ties Gjts * .qjn,). To propose alignment w}, and gj, for
each j = 1,---, M, define t; = min{r : » > t(Ywj, = 1}. Suppose that all the sites with
color ¢ between gj;—; and qju;, on the j' observation D; are represented by {sji,, -, Sji, }-
For u € {Sji17 cee 7Sjik}7 let

P =0y = 0

Jt

denom
PV =1y = (Lol s —h)jo)Jo 0

denom

where denom = f,, + (1 — f,) Zle ¢ ((aysji, + B; — hy)/o) Jo. Then the acceptance ratio for
this type B transition is

(Hk+1aLawk+1;0) — 3wt . wk
- Wiy 1— - Wi
C(F[k, [,wk, ) (fpf ) J ( f ) J

H lqb @i+ B = b\ A diy
o o N+1 b,

J

ro(b, hyw,q) = min{l,c

H Pr(Ni, By, Hi,, wi, @x|Dj, Nig1, B, Hig1, W1, Qi)
Pr(Nis1, Bey1, Hig1, Wes1, Ges1| Dy, Nig, Bie, Hi, wie, qi) [

where Pr(Nit1, Bit1, Hit1, Wi, Qot1| Dy, Ni, Bi, Hi, wy, qi) is the product of py, p., density
of hy from (8) and probability from either (9) or (10), while Pr(Ny, By, Hi, Wi, ¢x|Dj, Ni+1,
Bit1, Hyrs Wipns o) = O, (1—wj) +1)/(32, 32,;(1 —wj) + N), which is the probability
to delete the t* color.

122



International Journal of Mathematics and 'M '
Computer Science, 5(2010), no. 2, 123-140 5

Mathematical Tools and Statistical Techniques
for Proteomic Data Mining

Don Hong!?, Shi Yin Qin®, and Fengqing (Zoe) Zhang?

! Department of Mathematical Sciences
Program of Computational Sciences
Middle Tennessee State University
Murfreesboro, TN, TN 37132, USA

2 College of Science
Ningbo University
Ningbo, Zhejiang, China

3 School of Automation Science and Electrical Engineering
Beihang University
Beijing, China

4 Department of Statistics
Northwestern University
Evanston, 1L, 60208, USA

e-mail: dhong@mtsu.edu, gsy@buaa.edu.cn, FengqingZhang2015Qu.northwestern.edu
(Received June 30, 2010, Revised Aug. 15, 2010, Accepted Nov. 1, 2010)

Abstract

Proteomics is the study of and the search for information about proteins. The de-
velopment of mass spectrometry (MS) such as matrix-assisted laser desorption ionization
(MALDI) time-of-flight (TOF) MS and imaging mass spectrometry (IMS), greatly speeds
up proteomics studies. At the same time, the MS and IMS applications in medical science
give rise to many challenges in mathematics and statistics regarding to the MS and IMS data
analysis including data preprocessing, classification, and biomarker discovery. In this paper,
we give a review of recent development of mathematical techniques and statistical tools for
MS and IMS based proteomic data mining including wavelet based MS data preprocessing
and multivariate statistical methods for IMS data classification and biomarker discovery.
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1. Introduction

The widespread adoption of matrix-assisted laser desorption ionization (MALDI) time-of-
flight (TOF) MS for protein identification in proteomics studies is driven by the sensitivity,
unlimited mass range capabilities, versatility and intact protein analysis (see [1], [11], [30]
for example). One promising area of MS based proteomics is that the information hidden in
the noisy mass spectral data can help people to detect cancer even in early stage. MS has
already been widely used to find disease related proteomic patterns in complex mixtures of
proteins. These new techniques have made proteomics possible, especially when involving
large molecules. Indeed, the Nobel prize in chemistry in 2002 recognized MALDI’s ability to
analyze intact biological macromolecules. MALDI IMS has emerged as a powerful technique
for analyzing the spatial distribution of proteins directly in tissue specimens. IMS as a
platform has shown great potential and is very promising for rapid mapping of protein
localization and the detection of sizeable differences in protein expression (see [11], [28], [31],
and references therein). However, the complexity and high dimensionality of the MS and
IMS data pose great challenges for data processing.

Usually, a raw MS spectrum consists of three components: true peaks, baseline, and
noise. Disentangling these three components is a complex task. Concerning to IMS, the
data processing becomes even more difficult. IMS data has two spatial dimensions (z— and
y— dimensions) and the mass-over-charge (m/z) dimension. Each MALDI IMS data set
is multidimensional and has hundreds of pixels. Each pixel is associated with a complete
mass spectrum. This contrasts with regular images where for each pixel there is a set of
RGB values. Each mass spectrum contains mass-to-charge (m/z) values ranging from 2k
to 70k Daltons and ion intensity values which are associated with each pixel. There are
hundreds of mass spectra represented in a single MS image. To fully utilize IMS data, it is
desirable to not only identify the peaks of the spectrum within individual pixels, but also to
study correlation and distribution using the spatial information for the entire image cube.
Another important distinction that should be made is determining if the m/z values selected
as potential biomarkers are caused by the biological structure of the tissues or by the disease
state being investigated.

Generally, the mathematical processing of MS signals can be roughly divided into two
steps. First, in the preprocessing step, we attempt to recover true signals from the raw data,
as accurately as possible. This step includes calibration, denoising, baseline correction,
data alignment cross samples, and peak selection. The second type processing is to involve
operations such as dimension reduction, feature selection, clustering, and pattern recognition
for classification. Preprocessing is of great importance and can improve the performance of
classifiers to separate cancer and non-cancer samples. It has been studied that ineffective or
inadequate algorithms in preprocessing will introduce substantial biases and thus prevent to
extract valuable biomarkers from raw data.

Wavelet is an important method in signal processing and has very broad applications in
image processing and statistical data analysis. The characteristics of wavelet analysis such
as localized representation, orthogonal decomposition and multi-resolution analysis (MRA)
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guarantee that wavelets are very suitable for MS data analysis ([6], [7], [9], [12], [13], [18],
[19] for example). Wavelet could reveal more information than other conventional methods.
Combing the zoom-in and pan-out properties, wavelets, as building blocks of models, are
well localized in both time and frequency scale. The MRA enables us to analyze the signal
in different frequency bands and thus enables us to observe any transient in time domain
as well as in frequency domain. Furthermore, wavelet is very useful in analyzing data with
gradual frequency changes. In addition, wavelets select widths of time slices according to
the local frequency in the signal. This adaptive property of wavelets certainly can help us
to determine the location of peak differences of MS protein expressions between cancer and
non-cancer samples.

In this paper, we present an overview of wavelet applications in the MALDI MS and
IMS proteomics data processing and multivariate statistical tools for IMS data biomarker
discovery. We explore the characteristics of MALDI MS and IMS data as well as wavelet
application in this area, both theoretically and practically. The application includes not
only in preprocessing steps but also in the feature selection. We provide some guidelines to
algorithm development and parameter selection in different data processing stages of both
the conventional MALDI MS data and IMS data. After analyzing the MS and IMS data
from the view of wavelet transform, we suggest integrating all MS and IMS data processing
steps by using wavelet transform. Biomarker selection from IMS data is a problem of global
optimization. A recently developed regularization and variable selection method, elastic-net
(EN), produces a sparse model with admirable prediction accuracy and can be an effective
tool for IMS data processing. Very recently, we have incorporated a spatial penalty term into
the EN model and developed a new tool for IMS data biomarker selection and classification
([20], [35]). The remainder of the paper is organized as follows. The characteristics of MS
and IMS based proteomics data and wavelet applications in this area are discussed in the
next section. In Section 3, the preprocessing steps and wavelet applications are presented in
detail. Wavelet-based procedure for feature selection and classification algorithms are also
discussed this section. Newly developed elastic net based biomarker discovery tools used for
IMS data are discussed in Section 4.

2. Characteristics of MALDI MS and IMS Data and Wavelet Ap-
plications

In this section, we describe in detail the characteristics of MALDI TOF MS and IMS data
and apply wavelets in the data (pre)processing.

2.1. Mathematical Model for MALDI MS and IMS Proteomics Data

A commonly used model ([6], [9], [18], [25]) for MS data analysis is that each raw spec-
trum data can be represented in three parts: f(t) = B(t) + N % S(t) + €(t), where f(¢) is
the observed signal. B(t) stands for baseline, a systematic artifact commonly seen in mass
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spectrometry data. S(t) is the true signal, which consists of a sum of possibly overlapping
peaks, each corresponding to a particular biological molecule such as a protein or a pep-
tide. N is the normalization factor, a constant multiplicative factor to adjust for spectrum
specific variability. €(¢) stands for the noise function. In general, the preprocessing steps
include calibration, denoising, baseline correction, normalization, peak alignment, and peak
detection and quantification. The difficulty in processing MS data stems from the mixture
of true peaks, baseline and noise. Separating these three components from each other is very
complex.

Concerning the MADLI IMS data, many of the characteristics in mass spectrum prepro-
cessing stage are the same as those for the MS data. However, the main difference is that the
IMS data has two spatial dimensions (both z- and y- dimensions) plus a mass-over-charge
(m/z) dimension. The combination of spatial and mass resolution results in large and com-
plex data sets, which gives a great challenge to the quantitative analysis and interpretation
tools. Figure 1 shows a mouse brain IMS data set, and the darker region in Figure 1(a)
indicates the presence of the tumor. The grid in Figure 1(a) forms a matrix of points of the
sample surface. Individual mass spectra are acquired for every point (pixel) of the sample
surface and stored digitally. Behind each pixel, it is an entire mass spectrum with a very
large range of m/z values. Figure 1(b) displays three mass spectra corresponding to three
different pixels of the mouse brain tissue section. Specially designed software enables the
election of an analyte signal (m/z value) from the mass range and plots the intensity of the
signal for each individual point in a matrix. If the signal intensity is plotted by a color scale,
the matrix can be represented by an ion image of the analyte distribution, which is shown in
Figure 1(c) and (d). Ion images can show the spatial spread of a particular peak’s intensity
over the tissue and the mass spectral peak represented by the amount of a particular ion
that was measured. From Figure 1(c), we can see that the m/z value 5442.704 is differ-
entially expressed between the cancer region and the normal region, which maybe due to
the latent biological function of this m/z value and its effect to cancer growth. Figure 1(c)
and Figure 1(d) have clearly different intensity distributions over the mouse brain. If one
has already known a particular m/z value having biological meaning and plans to know the
spatial distribution of a particular molecule, ion image is very informative. However, a more
important application should be the determination of unknown variants for metabolite and
protein profiling in both clinical and disease studies. Noticing that we have huge number of
ion images per data set, it is necessary to have statistical models to do biomaker selection
instead of doing visually checking. In addition, these conventional images, derived from a
specific analyte mass do not identify the spatially localized correlations between analytes
that are latent in IMS data processing. Although it is difficult to make full utilization of
both spatial information and spectrum information in IMS data, it is very necessary. For
IMS data processing, multi-scale representation and global analysis of spatial and protein
information of the biological samples will be the key for data processing. Therefore, the
multivariate data analysis methods can be applied in IMS data for identifying both spatial
and mass trends and merit further investigation.
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Figure 1: Mouse brain IMS Data. (a) photomicrograph of a mouse brain tissue section, implanted
with a GL26 glioma cell line and tumor growth; (b) three mass spectra from three different pixels;
(c) the ion image of m/z = 5442.704; and (d) the ion image of m/z = 7339.912.

2.2.  Wayvelets for MALDI MS and IMS Data

To extract the true signal from MS/IMS data, we need to remove the noise and the incoherent
signal from the observed data. Wavelet analysis serves as an efficient mathematical tool that
can be utilized to extract or encode the feature signal. Wavelet theory represents data signals
by breaking them down into many interrelated component pieces, similar to the pieces of a
jig-saw puzzle. When pieces are scaled and translated by wavelets, the breaking down process
is called a wavelet decomposition or wavelet transform. A discrete wavelet transform (DWT)
decomposes a signal into several vectors of wavelet coefficients. Different coefficient vectors
contain information about the signal function at different scales. Coefficients at coarse scale
capture gross and global features of the signal while coefficients at fine scale contain detailed
information. Applying wavelet transform to MALDI-TOF MS data, the protein expression
difference can be measured at different resolution scales based on a molecular weight-scale
analysis. It may reveal more information than other conventional methods. Wavelets, as
building blocks of models, are well localized in both time and scale (frequency). In wavelet
analysis, a function is approximated by a weighted sum over the scaled and translated mother
wavelets. Each weighted wavelet acts as a building block, and when all the blocks are summed
together, an approximation is found. Wavelet is very useful in analyzing data with gradual
frequency changes. Signals with rapid local changes (signals with discontinuities, cusps,
sharp spikes, etc) can be precisely represented with just a few wavelet coefficients.
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The wavelet approximation to a signal function f is built up over multiple scales and
many localized positions. The fundamental concept involved in multi-resolution analysis
(MRA) is to find the average features and the details of the signal via scalar products with
scaling signals and wavelets. The MRA enables us to analyze the signal in different frequency
bands and thus enables us to observe any transient in time domain as well as in frequency
domain. The high frequency band output is viewed as the wavelet transform coefficients
for a fine scale and the low frequency band output is decimated by a factor of 2. This
low frequency band is then split into a high and low band again. The band splitting and
decimation process continues and produces an octave band representation of the signal. The
high pass filter output wavelet coefficients represent the signal’s characteristics and energy
at a particular scale. The output of the final low pass filter is the residual namely the most
coarse signal.

Since true signal S(z), the baseline B(z) and the machine noise €(z) have different time-
frequency attributes, it is then possible to separate them in wavelet coefficients. In the
wavelet representation, the noise €(x) is concentrated in the fine scale wavelet coefficients
and the incoherent signal can be approximated by the projection onto the coarse space. In
contrast to Fourier transforms, wavelets select widths of time slices according to the local
frequency in the signal. This adaptive property of wavelets certainly can help us to determine
the location and intensity (peak) difference(s) of MALDI-TOF MS protein expressions be-
tween cancerous and normal tissues in term of molecular weights. Most peak signals can be
represented by a small number of wavelet coefficients while white noise is distributed equally
over all wavelet coefficients. However the separation of noise and peaks is not so straight-
forward since they both have fast changing parts. A variety of threshold strategies can be
used to remove the machine noise from the data including feedback strategies from MS data
information[7]. But inappropriate thresholding may cause peak attenuation. Baseline cor-
rection is an important step in MS data preprocessing. Through wavelet transforms, baseline
B(x) can be considered as a coarse approximation and a component with small coefficients
in a wavelet space[12]. As for the peak selection step, peaks of MS data can be viewed as
the singularities of the MS output signal. Singularities of a signal can be represented by the
modulus maxima of their wavelet transforms (see [15], [27], [34], for example). Concerning
the 3D IMS data, wavelet is also suitable for data preprocessing as well as feature selection.

3. Wavelet Applications for MALDI MS Data Preprocessing

In this section, we discuss in detail the wavelet applications for MALDI MS data preprocess-
ing with an emphasis on denoising, baseline correction, and feature (peak) selection. Figure
2 illustrates the effects of the preprocessing steps visually. Recall that each raw spectra
data can be represented in three parts: f(t) = B(t) + N = S(t) + €(t). Figure 2 displays
the MALDI MS data preprocessing framework in terms of denoising, baseline correction and
peak selection.
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Figure 2: MALDI MS data preprocessing framework. (a) a raw mass spectrum; (b) the denoised
mass spectrum; (c¢) the mass spectrum after baseline correction; and (d) the mass spectrum marked
with selected peaks.

3.1.  Denoising

Yasui et al.[33] and Coombes et al.[9] independently proposed the application of wavelet
transformation in proteomics. Recent applications of wavelets for MS data processing can
be found, for example in [6], [7], [12], [18], and [22].

The general wavelet denoising procedure is as follows:

1. Apply wavelet transform to the noisy signal to produce the noisy wavelet coefficients
to the level which we can properly distinguish the peaks.

2. Select an appropriate threshold limit at each level and a threshold method (hard or
soft thresholding) to best remove the noises.

3. Inverse wavelet transform of the thresholded wavelet coefficients to obtain a denoised
signal.

In denoising step, the most important issues are the selection of a suitable wavelet, the
decomposition levels, and the coefficients of the denoising threshold. Selecting the mother
wavelet is of great importance for wavelet transform. There is no strict rule for selection.
However, the analysis becomes more precise if the wavelet shape is adapted to the signal.
DWT is sufficient for exact reconstruction, and the discrete forms are necessary for most
computer implementations. Du at al.[13] proposed an improved DWT smoothing algorithm
which utilizes the cross-level DWT coefficients information during smoothing. It estimates
the noise distribution based on the first DW'T decomposition level, and then infers the thresh-
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old at other levels. In order to reduce the peak attenuation in smoothing, the related DW'T
coefficients of the detected peak-related DW'T coefficient are also used for reconstruction.
Coombes et al[9] proposed to use undecimated discrete wavelet transform (UDWT). They
suggested when using the DW'T for denoising, it tends to create significant artifacts near
the ends of the signal. With the DW'T, there is usually a trade-off between the smoothness
of the denoised signal and its squared-error performance ([8], [23]). While DWT denois-
ing effect will change drastically if the starting position of the signal is shifted, UDWT is
shift-invariant. Comparing with DW'T, it is reported that UDW'T gives better visual and
qualitative denoising, with a small added cost in computational complexity[9].

For the choice of a decomposition level, the maximum level to apply the wavelet transform
depends on how many data points are contained in a data set, since there is a down-sampling
by 2 operation from one level to the next one. One factor that affects the noise removal results
is the signal-to-noise ratio (SNR) in the original signal. Fewer levels of wavelet transform are
needed to remove most of the noise if the signals have higher SNR. The signals with lower
SNR should be decomposed by relatively more levels of wavelet transform.

For the denoising threshold, different kinds of methods have been tried to extract and
preserve the desired signals as much and accurately as possible. The commonly used uni-
versal threshold is computed as A = o+/2log N, where ¢ stands for the estimation of the
variation of the coefficients on the standard deviation scale. N represents the number of
data points (wavelet coefficients). However, local threshold performs better than universal
threshold when applied to MS data. The noise distribution of MS data over the m/z value
is heterogeneous[13]. The most important issue in a denoising procedure is the wavelet co-
efficient threshold selection. In [9], UDWT is used to denoise the spectra and Daubechies
wavelet of degree 8 is applied. The denoising procedure starts by transforming observed
signal from time domain to the wavelet domain, then computes the median absolute devi-
ation (MAD) of the wavelet coefficients, sets coefficients to zero with a hard thresholding
(some threshold expressed as a multiple of 0.67 MAD) and finally transforms the signal back
to the time domain. However, the denoising parameters are usually chosen by experience.
Chen et al [7] introduced feed-back concepts to the MS data denoising in order to target
the optimal parameters setup as objectively as possible. It is reported in the paper that the
elevated baseline and the height of such baseline can be also associated with the proportion
of falsely detected peaks. Thus an adaptive threshold selection algorithm is suggested by
utilizing the proportion of the baseline as an index to adjust the thresholds. There are many
other useful and practical principles for adaptive threshold selection such as Stein’s unbiased
risk estimate (SURE), minimal mean squared error, generalized cross validation and etc.. In
addition, Du et al.[13] proposed to utilize the cross-level DWT coefficients information for
denoising. It estimates the noise distribution based on the first DWT decomposition level,
and then infers the threshold at other levels. There is an approximate linear relationship
of the noise component distribution at different levels. It is known that wavelet transform
modulus maxima of signal and noise have different transmission properties across different
scales. The method of utilizing wavelet coefficients relativity to tell desired signal from noise
is called spatially selective noise filtration. This method can provide more steady denoising
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results but requires higher computational cost. In addition, Li et al [24] proposed Bayesian
wavelet shrinkage and thresholding estimators which outperform the classical data adaptive
wavelet thresholding estimators in terms of mean squared error with finite samples. It is
proposed to use block threshold strategy in [18] because the high frequency components
decrease as the mass weight increases. Block threshold is to threshold the wavelet coeffi-
cients in groups (blocks) rather than individually to increase estimation accuracy by utilizing
information about neighboring coefficients.

Two rules are generally used for thresholding the wavelet coefficients (soft/hard thresh-
olding). Hard thresholding sets zeros for all wavelet coefficients whose absolute value is less
than the specified threshold limit. Generally hard thresholding provides an improved signal
to noise ratio but the reconstructed signal may have additional oscillation. Soft threshold-
ing only reduces these wavelet coefficients less than the specified threshold limit instead of
setting them to be zeros. Soft thresholding can preserve the smoothness but not as good as
hard thresholding in the sense of mean squared error. However the selection of hard or soft
thresholding should refer to the principles for thresholding selection. With an appropriate
threshold, noise can be removed without biasing the signal too much, since the wavelet co-
efficients greater than the particular threshold level still remain unaltered. However, if the
threshold is too large, then the signal will be altered. If the threshold is too small, then
the level of denoising is not enough. This causes a crucial problem of peak attenuation. An
ideal transform can project signal to a domain where the signal energy is concentrated in a
small number of coefficients. On the other hand, if the noise is evenly distributed across this
domain, this domain will be a good place to do denoising, due to the fact that the SNR is
significantly increased in some important coefficients, or we can say the signal is highlighted
in this domain while the noise is not. However, the signal peaks also have fast changing
components just like noise and will be attenuated by wavelet transform as well. All these
algorithms discussed above aim to extract noise from desired signal as accurately as possible.

3.2. Baseline Correction

Another important issue that needs to be addressed in MS data preprocessing is the baseline
correction. Baselines of different spectra can have large variation. Usually baseline is viewed
as a very low frequency component of the observed signal. The region of the spectrum below
950 m/z is typically dominated by noise from the matrix molecules and may also contain
extensive areas of saturation where the number of ions hitting the detector exceeds its ability
to count them. Denoising also plays a critical role in baseline correction. Without it, the
extremes of the noise (on the low end) will tend to drive the estimated baseline below the
actual baseline, and the baseline-corrected spectra will tend to drift upward to the right [2].

Baselines are corrected by fitting a monotone local minimum curve to the denoised spectra
in [9]. However, wavelet transform can also serve as an effective tool in baseline correction.
The discrete wavelet transform decomposes the MS signal into an approximate component
and several detail components. It has been mentioned in [12] that the approximation compo-
nent at a certain higher level of DW'T is a good estimation of the smoothly decaying baseline.
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But later, they point out that the baseline removal does not perform well when large peak
regions exist in the spectrum. However this does not mean baseline correction in wavelet
domain is not useful. If the spectrum has large peak regions, the approximate component
at a certain higher level of DWT still contains information of peaks. Thus the method to
remove the approximate component as baseline will, of course, fail in this situation. It will
badly affect the peak selection. If we perform baseline correction by fitting a monotone local
minimum curve in the approximate component, it would be more effective and reasonable.
In addition, the empirical mode decomposition (EMD) introduced by Huang et al [21] could
also serve as a useful method in MS data baseline correction. EMD is adaptive and therefore
highly efficient method for analyzing nonlinear and non-stationary data.

3.3. Feature Peak Selection

One of the critical problems in the MS data analysis is to select meaningful feature peaks.
Therefore, the final goal of the MS data preprocessing is to identify the locations and in-
tensities of important peaks which can be used for biomarker discovery. Actually, the peak
selection procedure can be considered as two parts: peak detection that is to find the m/z
values of peaks and peak quantification that is to quantify the intensities of peaks. Peak
selection procedure can reduce data dimension significantly. Most of the current methods use
the height of the local maximum to quantify the peak within estimated boundaries. Peaks
are selected in [9] using all local maxima of a spectrum after denoising, baseline correction,
and normalization. The height of the peak is used to quantify peaks. For this purpose,
a local maximum is defined as a point where the intensities change from increasing to de-
creasing (allowing for flat plateaus when the tops of peaks are more than one clock tick in
width). The signal-to-noise ratio (SNR) of a peak is estimated as the height above baseline
divided by a median-smoothed version of the wavelet-defined noise. Also the local maximum
points need to be larger than certain intensity threshold and SNR threshold in order to be
considered as peaks. However, point measurement may be subject to high variation form
various resources. Also, the height may not be a good index of the total amount of ions for
a specific feature.

As we know, high amplitudes do not always guarantee real peaks: some sources of noise
can result in high amplitude spikes. Conversely, low amplitude peaks can still be real. Mea-
suring a small region or bounded neighborhood around that peak would be more robust and
informative. It is pointed in [12] that the estimated peak strength is proportional to the
area under the curve (AUC) of the peak in simple situations. Therefore, they suggested to
study AUC estimation in spectra with multiple overlapping peaks for possibility to improve
peak detection. A new peak selection algorithm for MS data analysis is proposed in [23] by
using asymmetric Lorentzian and Sech2 functions to fit peak shape. A Bayesian wavelet-
based functional mixed model is used to represent mass spectra as functions in [29]. This
flexible framework in modeling nonparametric fixed and random effect functions enables it
to simultaneously model the effects of multiple factors. From the model output, they iden-
tify spectral regions that are differentially expressed across experimental conditions, while
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controlling the Bayesian FDR, in a way that takes both statistical and clinical significance
into account.

All these peak selection algorithms discussed above require denoising, baseline correc-
tion, and normalization beforehand. A peak detection algorithm called MassSpecWavelet,
by applying CWT-based pattern matching and wavelet transform modulus maxima, is intro-
duced in [12]. This method can be directly applied to the raw data and requires no baseline
removal or peak smoothing preprocessing steps before this peak detection. As mentioned
earlier, peaks of MS data can be viewed as the singularities of the MS output signal. Sin-
gularities of a signal can be represented by the modulus maxima of their wavelet transforms
([27], [34], [15]). For the CWT, a symmetric Mexican Hat wavelet is used in [12]. The
Mexican Hat wavelet is proportional to the second derivative of the Gaussian probability
density function. The symmetric property of Mexican Hat wavelet can help to remove the
baseline component after continuous wavelet transform. In the peak identification process,
instead of using Lipschitz exponent to check the singularity, the SNR is used. However, as
we know Lipschitz exponent is a very reliable and popular way to measure the singularity of
signal. Thus by taking advantage of Lipschitz exponent, this peak identification algorithm
may be further improved.

The peak quantification algorithms can be measured in terms of reproducibility while
the evaluation of peak detection algorithms can base on sensitivity and false discovery
rate. Guerra et al. [26] use ANOVA and F-tests to measure the reproducibility of peak
quantification. Their results show for peak quantification, among five peak selection algo-
rithms, MassSpecWavelet has the best performance. This wavelet-based direct peak detec-
tion method shows its advantage with sensitivities above 0.95 with a FDR of 0.1 in their
experiment results. It is possible, as well as quite meaningful, to integrate all MS data pre-
processing steps by wavelet transform. Another wavelet-based peak selection algorithm for
MS data analysis, which is available in an open source framework OpenMS, can be found
in [23]. This algorithm is a three-step technique including determining the positions of pu-
tative peaks in the wavelet-transformed signal, fitting an analytically given peak function
to the data in that region, and optionally improving the resulting fit by using nonlinear
optimization.

Algorithms above are mainly about peak selection in individual spectrum. In real appli-
cation, however, the positions of peaks in each spectrum around the same m/z value may
be slightly different from each other. Thus a processing step that determines which peaks
found in individual spectrum should be identified as representing the same biochemical sub-
stance across spectra is necessary. Coombes et al. [9] started selecting the set of peaks with
S/N > 10 first, then coalesced two peaks if they differed in location by at most 7 clock
ticks or if they differed in relative mass by at most 0.3%. These parameters were deter-
mined empirically by visually checking the spectra. Then they considered the peaks with
2 < S/N < 10, and added these to the list if they fell within the same distance limits of a
previously identified peak. A new algorithm called project spectrum binning (PSB) for the
cross sample peak alignment was introduced by Hong et al in [19]. Averaging is a fundamen-
tal principle underlying many statistical methods. Peak detection on average spectrum is a
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direct and simple way for spectrum alignment. Using mean spectrum for peak extraction
and quantification can be found in [25].

4. Classification and Biomarker Discovery

After preprocessing procedures, the MS data is ready for biological feature extraction or
called biomarker discovery associated with certain diseases. Machine learning or pattern
recognition methods can be applied to extract features from wavelet coefficients of the MS
data after wavelet transform. In this section, we emphasize on image mass spectrometry data
classification and biomarker discovery using multivariate statistical analysis. For IMS data,
while heat map plots of individual ion intensities make pretty pictures, viewing the data one
ion at a time is tedious and relies on the expertise and interpretation of the operator. There
has been good progress in applying multivariate statistical methods such as PCA, LDA and
SVM to IMS data analysis. However, these methods for IMS data processing are inadequate
due to their limited use of spatial information and the advantages of IMS technology [35].

MALDI-Imaging is an emerging and very promising new technique for protein analysis
from intact biological tissues [11]. It measures a large collection of mass spectra spreading
out over an organic tissue section and retains the absolute spatial information of the mea-
surements for analysis and imaging. The current interest in IMS lies in its unique advantage:
the ability to correlate anatomical information provided by histology with the spatially re-
solved biochemical information provided by the imaging mass spectrometry experiments.
Compared with MALDI-MS, IMS, by automatic spotting of matrices on the tissue in an
array format, results in comprehensive structural analysis at a higher spatial resolution,
saves more time, and provides hundreds of identical independent spectra which address the
measurements repeatability. However, each MALDI imaging data set is multidimensional,
with hundreds of pixels covering the tissue section and an entire mass spectrum in which
mass-over-charge (m/z) values can range from 2k to 70k Dalton associated to each pixel.
In this case, the number of predictors (m/z values) is greatly larger than the number of
observations. To fully utilize IMS data, it is desirable to not only identify the peaks of the
spectrum within individual pixels but also to study correlation and distribution using the
spatial information for the entire image cube. Another important issue is to distinguish the
selected feature m/z values according to the differences caused by biological structure of the
tissue or purely by cancer. All these difficulties compounded together, pose great challenges
to IMS data processing and are yet to be well solved.

The application of MVA methods has opened new doors for the exploration of IMS data.
Very recently, two statistical models are presented in [20] and [35], respectively, for biomarker
selection and classification of the high dimensional and complex IMS data. The aim is to
extract as much useful information as possible from IMS data, by not only utilizing the
spectrum information within individual pixels but also studying correlation and distribu-
tion using the spatial information. Compared with other currently popular methods, these
models work efficiently and effectively for IMS data processing in terms of confirming new
biomarkers, producing more precise peak list by including significant peaks and reducing the
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number of side peaks, and providing more accurate classification results.

4.1. EN4IMS Model for IMS Data Processing

Two fundamental criteria for evaluating the quality of a model in statistical modeling are
high prediction accuracy and discovering relevant predictive variables. In the practice of
statistical modeling, variable selection is especially important; it is often desirable to have
an accuracy predictive model with a sparse representation since modern data sets are usually
high dimensional with a large number of predictors. One would like to have a simple model to
enlighten the relationship between the response and covariates and also to predict future data
as accurate as possible. Ordinary least squares (OLS) estimates are obtained by minimizing
the residual sum square (RSS). It is well known that OLS does poorly in both prediction
and variable selection. Penalized methods have been proposed to improve OLS, starting
with Ridge regression [17], followed by Bridge regression [16], the Garotte [4], the Lasso [32],
LARS [14], and very recently the elastic net [36]. The Dantzig selector method was proposed
in [5] by using sparse approximation and compressive sensing.

The newly developed variable selection method, elastic net (EN), can simultaneously
perform automatic variable selection and continuous shrinkage [36]. That is, it can contin-
uously shrink the coefficients toward zero as its regularization parameters increase; some
coefficients are shrunk to exactly zero if the regularization parameters are sufficiently large.
The shrinkage often improves the prediction accuracy due to the bias-variance trade-off.
Thus, the EN model simultaneously achieves accuracy and sparsity. The achievement of
sparsity is particularly useful when the number of variables (p) is much larger than the
number of observations (n). In addition, the EN model encourages a grouping effect, where
strongly correlated predictors tend to be in or out of the model together. Compared with
other current commonly used analysis methods, the EN model is much more suitable for
IMS data processing. In [35], a spatial penalty term is incorporated into the EN model in
order to develop a new tool for IMS data biomarker selection and classification. The moti-
vation of this new model EN4IMS is to fully utilize not only the spectral information within
individual pixels, but also the spatial information for the entire IMS data cube. A software
package for comprehensive IMS data processing, called IMSmining, is developed based on
this new model. By incorporating the spatial penalty term, this package helps to distinguish
the IMS feature peaks caused by biological structural differences from those truly associated
with cancer.

The EN4IMS method has been tested on extensive simulation studies, and the algorithm
has also been applied to real IMS data sets provided by Vanderbilt University Mass Spec-
trometry Research Center (VUMSRC). The analysis results of both simulation studies and
real data examples show that the EN4IMS algorithm works efficiently and effectively for IMS
data processing: producing a more precise listing of feature peaks, helping to discover new
potential biomarkers, and providing more accurate classification results.
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4.2.  Weighted Elastic Net Model

In order to better consider the spatial information for more precise biomarker selection,
a more general model called weighted elastic net (WEN), which incorporates the spatial
penalty directly into the EN model equation, is developed in [20]. Theoretical properties of
the WEN model such as the variable selection accuracy are discussed there as well.

In IMS data analysis, if a biomarker in terms of an m/z value in the MS spectrum is truly
related to a cancer disease, then it is reasonable to expect that the ion intensity values at this
m/z from different pixel locations in a cancer area are approximate the same. Therefore,
the standard deviation of the intensities at the m/z should be small. In comparison, if
the biomarker selected by the statistical model based on differentiation mainly caused by
the tissue structure, then the ion intensities at the m/z point vary significantly from pixel
to pixel. Therefore, the standard deviation of intensities at such an m/z point should be
relatively large. Thus, it is proper to associate its standard deviation at each predictor
with the corresponding coefficient in the model to enforce penalty on predictors caused by
structure differences.

To better consider the spatial information for more precise biomarker selection, we pro-
pose the following weighted elastic net (WEN) model [20]:

1 P P n L
argming ||y — D OxiBilI3 +nA > wilB] + 52 > Iwisl?, (4.1)
j=1 j=1 j=1
where w; > 0, j = 1,--- ,p are weighted penalty coefficients. Let W = diag[wy, -+, wp].
Then the WEN model can be rewritten as

1 n
argmin 2 |ly — X3+ ma [ W5l + DAl W3, (1.2

The weighted elastic net model (4.1) puts the weights associated with ion intensity spread-
ing information directly into the elastic net model and thus enforces larger penalty on the
coefficients of predictors caused by structure differences. This model inherits good properties
from the EN model including sparse representation, ability to deal with p > n problem and
grouping effect. In addition, compared with the EN model, it is more suitable for IMS data
analysis since it makes good use of the spatial information and thus it helps to distinguish
the selected feature m/z values according to the differences caused by biological structure
of the tissue or purely by cancer.

By an algebraic simplification, we can see that WEN also enjoys the computational ad-
vantage of the Lasso. Thus, an algorithm for the WEN method based on the algorithm LARS
[14] can be developed [20]. The WEN algorithm is applied to IMS data sets for predictor
selection and classification, and results show that the WEN method works effectively and
efficiently for IMS data processing.

The WEN algorithm together with EN4IMS plus many other functions are integrated
into a software package called IMSmining. Classification results of using the EN4IMS and
WEN models are compared with those of other current popular methods used in the IMS
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community. In a real data set of two mouse brain tissue sections, one is used for model
training and the other section is used for model testing. 110 pixels are selected from the
cancer area to be used as the training cancer data set, and 110 pixels are selected from the
normal area to be used as the training noncancer data set. Similarly, 110 cancer pixels and
110 noncancer pixels are selected from the second mouse brain tissue section as test data.
(Classification rates show that the EN4IMS and WEN models outperform the other methods.

Since both the EN4IMS and the WEN models are based on linear regression, it would
be interesting to consider piecewise linear spline regression classifiers for IMS data analysis.
However, due to the nonlinearity and the mixed ¢; and /5 constrains, we expect that such a
study is non-trivial at all. It would be also very interesting to incorporate wavelet transform
of IMS data into the study of classification and biomarker discovery.
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