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Lung cancer is the most frequently occuring fatal cancer in the United
States. By assuming a form for the hazard function for a group of lung
cancer patients for survival study, the covariates in the hazard function
are estimated by the maximum likelihood estimation following the pro-
portional hazards regression analysis. Although the proportional hazards
model does not give an explicit baseline hazard function, the function can
be estimated by fitting the data with non-linear least square technique.
The survival model is then examined by a neural network simulation.
The neural network learns the survival pattern from available hospital
data and gives survival prediction for random covariate combinations.
The simulation results support the covariate estimation in the survival
model.

1. Introduction

Cancer develops when cells in a part of the body begin to grow out of

control. It is the second most significant reason for US mortality. In 2001,

cancer caused 553,768 deaths in the United States, accounting for 22.9% of

all deaths in that year [13]. In the past fifty years, efforts have been made

to reduce death rates for different diseases, but the death rate for cancer

remains almost unchanged ([14], [15]). Among the various types of cancers,

lung cancer is the most frequently occuring fatal cancer, for both men

and women, in the United States. Each year there are about 170, 000 new

cases of lung cancer in the U.S.A. and 150,000 deaths attributable to this

201



May 4, 2007 10:5 WSPC/Trim Size: 9in x 6in for Review Volume chapter10

202 X. C. Yuan, D. Hong, and Y. Shyr

disease. Men are affected somewhat more frequently (100,000 cases/year)

than women (70,000 cases/year). Worldwide, there are 1 million new cases

per year. Over the past 5 decades the number of yearly cases has increased,

and the worldwide incidence may double to 2 million per year in the coming

decade. The average patient is 60 years old, and only 1% of cases are under

40 years old. About 90% of patients have historically died from their disease.

Recently, there has been a great deal of interest in modeling survival

data of cancer patients (see [2], [8], [12] for example). Survival analysis

is concerned with studying the time between entry to a study and a subse-

quent event, such as death. In practice, after a lung cancer patient is hospi-

talized, a set of medical data regarding the patients’ condition is recorded.

This data set may include information such as the patient’s survival time,

the tumor’s stage, the health grade, the disease free time, etc. With the

data set, we wish to study how the patient’s conditions might be associated

with the survival pattern and also a lung cancer patient’s survival chance,

or a group of patients’ survival distribution over time.

The goal of this study is to develop a survival model for relating the

hospital data profile to censored survival data such as time to cancer death

or recurrence. Censored survival times occur if the event of interest, i.e.,

the death, does not occur for a patient during the study period. Tradition-

ally, there are two approaches to model the unknown survival distribution.

One is to assume a classical parametric model such as normal, lognormal,

gamma, Weibull, Pareto or beta, then use a histogram, kernel or other

nonparametric estimate of the unknown density function. This method is

straightforward but cannot reflect the contribution of patients’ hospital con-

ditions to the survival distribution. Another is the proportional hazards

model, which was first proposed by D.R. Cox [1] in 1972 to investigate

the effects of covariates on survival patterns, also known as Cox regression

model [7]. The model permits having the patients’ hospital conditions as a

vector of covariates in the hazard function and can estimate the unknown

parameters for the covariates by partial likelihood without putting a struc-

ture of baseline hazard. In this study, however, we propose a structure of

the baseline hazard function, and estimate the parameters by the available

censored survival data so that the explicit survival function is determined.

This estimation is achieved by a least square fit for the cum hazard value

computed by SPSS.

In a survey study, the design parameters for the survey are sometimes

related to the hazard function but do not fit in the model. On some other

occasions, the independence assumption of the covariates may be violated.
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Sometimes correlations exist within each level of nesting. These could cause

biases and affect variances of parameter estimation [10, 11]. Therefore, tests

need to be done to evaluate the goodness of the estimated survival function.

There are two popular ways to test the model. One is to use 1/2 or 2/3 of

the time scale in the survival data to determine the parameters, and then

use the whole data set to examine the model; another is to use the whole

data set to set up the model, then using resample methods to check the

model. Neural networks are increasingly being seen as an addition to the

statistics toolkit which should be considered alongside both classical and

modern statistical methods. It has been pointed out in [16] many different

ways that classification networks have been used for survival data. In this

study, due to the lack of patient data, we propose a neural network model

to simulate the patients’ survival pattern and use the neural network to

generate a long list of “virtual data” to test the survival model.

The remainder of the paper is organized as follows: In Section 2, we

give a description for the survival model. We first introduce the conception

of hazard function and survival function as well as their relationship. We

then outline the method of proportional hazard model and propose and

justify the exponential form for baseline hazard function. In Section 3, we

discuss the parameter estimation by statistical methods including maximum

likelihood estimation (MLE) and non-linear least square estimation (LSE).

We also introduce the idea and conception of the neural network and set up

the proper neural network by MATLAB programs for testing. In Section 4,

we present the computational result with actual patient data. Discussions

and conclusions are given in Section 5.

2. Description of Model

2.1. Survival Function and Hazard Function

Following the notations in Actuarial Mathematics [4], we let T be a nonneg-

ative random variable representing the failure time of an individual in the

population. Assume T is distributed with the probability density function

(pdf) f(t), then the cumulative distribution function (cdf) is

F (t) = Pr[T ≤ t] =

∫ t

0

f(z)dz (2.1)

giving the probability that the event has duration t. The survival

function, S(t), is defined as the complement of the c.d.f., that is

S(t) = Pr[T < t] = 1 − F (t) =

∫

∞

t

f(z)dz. (2.2)
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The survival function gives the probability of being alive at duration t.

Naturally, when t = 0, S(t) = 1 and t → ∞, S(t) → 0.

An alternative characterization of the distribution of T is given by the

hazard function. Sometimes it is also called the force of mortality,

the mortality intensity function, or the failure rate. The hazard function

is the probability that an individual will experience an event (for example,

death) within a small time interval, given that the individual has survived

up to the beginning of the interval. It can therefore be interpreted as the

instantaneous risk of occurrence of dying at time t. The hazard function

h(t) can be estimated using the following equation:

h(t) = lim
∆t→0

Pr[t < T ≤ t + ∆t|T > t]

∆t
. (2.3)

The numerator of this expression is the conditional probability that the

event will occur in the interval (t, t + ∆t) given that it has not occurred

before, and the denominator is the width of the interval. We obtain a rate

of event occurrence per unit of time. Taking the limit as the width of the

interval decreases to zero, we obtain an instantaneous rate of occurrence.

The conditional probability in the numerator may be written as the

ratio of the joint probability that T is in the interval (t, t + ∆t) and T > t

(which is, of course, the same as the probability that t is in the interval),

to the probability of the condition T > t. The former may be written as

f(t)∆t for small ∆t, while the latter is S(t) by definition. Dividing by dt

and passing to the limit gives the useful result

h(t) =
f(t)

S(t)
=

F ′(t)

S(t)
=

(1 − S(t))′

S(t)
= −

S′(t)

S(t)
. (2.4)

This equation suggests the relationship between the survival function and

the hazard function. That is, the rate of occurrence of the event at duration

t equals the density of events at t divided by the probability of surviving to

that duration without experiencing the event. Furthermore, equation (2.4)

suggests that

h(t) = −
d

dt
log S(t), (2.5)

then

log S(t) = −

∫ t

0

h(z) dz + C. (2.6)
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Considering the boundary condition S(0) = 1 as we mentioned before, we

have C = 0, and thus

S(t) = exp{−

∫ t

0

h(z) dz}. (2.7)

Combining (2.7) with (2.4), we obtain

f(t) = h(t)S(t) = h(t) exp{−

∫ t

0

h(z) dz}. (2.8)

A recent survey on dynamic mortality modeling in actuarial mathematics

is given in [17].

2.2. Cox Regression

A Cox model is a well-recognized statistical technique for exploring the re-

lationship between the survival of patient and a set of explanatory variables

(see [1], [16] for example). We call these explanatory variables covariates.

Suppose that we have collected n patients with lung cancer. For the

ith patients, let (ti; δi) be the observed phenotype, where ti is the failure

time (in other words, when death occurs) when δi = 1, and is the censoring

time (e.g., last time known of a patient being cancer-free) when δi = 0. Let

xi = (xi1, · · · , xip) be the vector of p covariates for the ith sample taken

from the ith patient. We assume that a general Cox model with the hazard

function for the ith patient is modeled as

h(t|xi) = h0(t) exp(f(xi)), (2.9)

where h0(t) is called the baseline hazard function. Although f(xi) may

assume many formats, the most popular and also the simplest model for

f(x) is

f(xi) = xi · β = xi1β1 + · · · + xip
βp, (2.10)

where β is a column vector of coefficients. In this equation, it is assumed that

the effects of the different covariates on survival are constant over time and

are addictive in a particular scale. The Cox model makes no assumptions

about the form of h0(t), but assumes the parametric form for the effect of

the covariates (predictors) on the hazard. In this sense, the Cox model is a

semi-parametric model.

The vector β of parameters can be estimated by the partial likelihood

method. Let the observed follow up time of the ith individual be ti with

corresponding covariates xi, i = 1, .., n. The conditional probability for the
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ith individual failing at ti given that the individual is from the risk set

R(ti) (i.e., R(ti) = {j |tj ≥ ti}) is [10]:

h0(t) exp(xiβ)
∑

`∈R(ti)
h0(ti) exp(x`β)

. (2.11)

Assuming that there are K failures. The partial likelihood function is then:

K
∏

i=1

exp(xiβ)
∑

`∈R(ti)
h0(ti) exp(x`β)

. (2.12)

Recalling the definition of δi at the beginning of this section, the partial

likelihood function can be expressed as:

L(β) =

n
∏

i=1

[

exp(xiβ)
∑n

j=1 yj(t) exp(xjβ)

]δi

, (2.13)

where yj(t) = 0 when t ≤ tj , otherwise yj(t) = 1. Equation (2.13) can be

written in another way to remove the expression of δi:

L(β) =
∏

i uncensored

[

exp(xiβ)
∑n

j=1 yj(t) exp(xjβ)

]

. (2.14)

For a sample of size n, the log partial likelihood for expression (2.14) is

l(β) = log L(β) =
∏

i uncensored







xiβ − log





n
∑

j=1

yj(t) exp(xjβ)











. (2.15)

The maximum partial likelihood estimation of β can be obtained as a so-

lution to the equation

∂l(β)

∂β
= 0,

and thus,

n
∑

i uncensored

xi −

∑n
j=1 yj(t)xj exp(xjβ)

∑n
j=1 yj(t) exp(xjβ)

= 0. (2.16)

Cox and others have shown that this partial log-likelihood can be treated

as an ordinary log-likelihood to derive valid (partial) MLE of β. Therefore,

we can estimate hazard ratios and confidence intervals using maximum

likelihood techniques whose principal will be discussed in the next section.

To avoid the baseline hazard, estimates are based on the partial as opposed

to the full likelihood.
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Usually, the Cox proportional hazard regression model is a very use-

ful tool to estimate the coefficients in a linear combination of covariates

in survival analysis since both SAS PHREG procedure and SPSS Survival

Package perform regression analysis of the survival data based on the pro-

portional hazards model. However, because of the nature of proportional

hazard regression, neither software packages give an explicit function ex-

pression for the baseline hazard function h0(t). In the next section, we will

justify an explicit function of the baseline hazard function h0(t) and also

estimate the parameters in h0(t) using non-linear least square technique

based on the result obtained from the Cox regression for the survival func-

tion fitting the data set of lung cancer patients.

2.3. Baseline Hazard for Lung Cancer Patients

Like any cancer, the exact reason why one particular person is diagnosed

lung cancer and another does not remains unknown. However, certain fac-

tors are strongly correlated with an increase in lung cancer, when groups

of patients are studied. By rank, these factors are listed below [13]:

(i) Tobacco Smoking or exposure to smoke

(ii) Carcinogen Exposures

(iii) Radiation Exposure

(iv) Miscellaneous Risks Factors, including old scars in the lungs.

The first three factors involve an interaction between the individual and

the environment. Presumably an individual is continuously exposed to and

absorbs certain levels of smoke, radiation, or some kind of toxic material

(like carcinogen) which then lead to lung cancer. Though a portion of the

absorbed toxic materials is discharged from the body, the cumulative effect

of retained toxins contributes to the individual’s death [6].

For every given τ in [0, t] and the infinitesimal time element [τ, τ + dτ ],

let the sum δdτ + o(dτ) be the probability that a unit of toxic material

is absorbed during [τ, τ + dτ ] and the sum νdτ + o(dτ) be the probability

that a unit of toxic material in the body is discharged during [τ, τ + dτ ].

Assuming that δ and ν are independent of time, then the probability that

an individual will absorb a unit of toxic material during [τ, τ + dτ ] and will

retain it in his/her body up to time t is given by [6]

δdτ exp{−(t − τ)ν}. (2.17)

Integrating (2.17) over all possible value of τ yields
∫ t

0

δ exp{−(t − τ)ν}dτ =
δ

ν
[1 − exp{−νt}]. (2.18)
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The quantity in (2.18) is the expected amount of toxic material absorbed

during the interval [0, t] and present in the body at time t, which leads to a

possible suggestion of a function format for the hazard for cancers caused

through exposure to factors. Suppose the baseline hazard for lung cancer

patients is proportional to the quantity in the following equation:

h0(t) =
a

b
(1 − exp(−bt)). (2.19)

Defining the cumulative baseline hazard function, H0(t), by integrating

h0(t) and applying boundary condition that h0(0) = 0 yield:

H0(t) =

∫ t

0

h0(x)dx =
a

b
[x −

1

b
(1 − exp(−bt))]. (2.20)

3. Statistics Methods and Neural Network

3.1. Maximum Likelihood Estimation

Maximum likelihood estimation begins with writing a mathematical ex-

pression known as the likelihood function of the sample data. Roughly

speaking, the likelihood of a set of data is the probability of obtaining

that particular set of data, given the chosen probability distribution model.

This expression contains the model’s unknown parameters. The values of

these parameters that maximize the sample likelihood are known as the

Maximum Likelihood Estimates, or MLE. Maximum likelihood estimation

is a totally analytic maximization procedure. It applies to every form of

censored or multi-censored data, and is even able to be used across several

stress cells and estimate acceleration model parameters at the same time

as life distribution parameters. Moreover, MLE and likelihood functions

generally have very desirable large sample properties because they: (a) be-

come unbiased minimum variance estimators as the sample size increases,

(b) have approximate normal distributions and approximate sample vari-

ances that can be calculated and used to generate confidence bounds, and

(c) likelihood functions can be used to test hypotheses about models and

parameters. Although it has many good attributes, MLE has an important

drawback, that is, with a small number of failures (say, less than 30, and

oftentimes, less than 50), MLE may be heavily biased and the large sample

optimality properties do not apply.

If X is a continuous random variable with pdf

f(x, β1, β2, · · · , βp), (3.1)
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where β1, · · · , βp are p unknown constant parameters which need to be

estimated. Denote βτ = (β1, · · · , βp). Conduct an experiment and obtain

N independent observations, x1, · · · , xN , which correspond in the case of

life data analysis to failure times. The likelihood function is given by

L = L(x1, · · · , xN |β1, · · · , βp) = ΠN
i=1f(xi|β1, · · · , βp). (3.2)

The Logarithmic function is

l = log L =

N
∑

i=1

log f(xi|β1, · · · , βp). (3.3)

For the survival analysis, we assume (2.9) and (2.10). Then the pdf becomes

f(ti|xi) = h(ti|xi)S(ti|xi) = h0(ti) exp{xiβ −

∫ ti

0

h0(z) exp(xiβ) dz}.

(3.4)

The log-likelihood function l(β) has the expression

l =

N
∑

i=1

log f(ti|xi) =
∑

i

[log h0(ti) + (xiβ −

∫ ti

0

h0(z) exp(xiβ) dz)]

= N log h0(ti) + h0(ti) +
∑

i

xiβ −
∑

i

∫ ti

0

h0(z) exp(xiβ) dz. (3.5)

When taking partial derivatives with respect to β to maximize l(β), the

computation often becomes very difficult due to the presentation of h0(z)

in the integration term. That is why a proportional hazard model is used

in the Cox models so that the term h0(z) can be canceled out in MLE

calculation.

Recall (2.15), the MLE for β̂ is s(β̂) = 0, where the score function is

s(β) =







∂l(β)
∂β1

. . .
∂l(β)
∂βp






. (3.6)

One of many nonlinear algorithms to compute this maximization is the

Newton-Raphson iteration. The Newton-Raphson algorithm for computing

β̂ starts with an initial guess β̂(0) and then iteratively determines β̂(m) from

the formula

β̂(m) = U−1(β̂(m−1))s(β̂(m−1)), (3.7)
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where

U(β) = −N · Hessian(β) = N ·













∂2l(β)
∂2β

∂2l(β)
∂β1∂β2

· · · ∂2l(β)
∂β1∂βp

∂2l(β)
∂β2∂β1

∂2l(β)
∂2β2

· · · ∂2l(β)
∂β2∂βp

· · · · · · · · · · · ·
∂2l(β)
∂βp∂β1

∂2l(β)
∂βp∂β2

· · · ∂2l(β)
∂2βp













. (3.8)

The Hessian matrix is positive definite, so it is strictly concave on β. How-

ever, the computation is obviously more complex. In practice, we use soft-

ware to carry out this process for the MLE.

3.2. Non-Linear Least Square Fit

Least square regression (LSE) is a very popular and useful tool used in

statistics and other fields. Suppose we want to find a relationship between

a dependent (response) variable Y and an independent (predictor) variable

X , in which a statistical relation is

Y = g(X |θ) + ε, (3.9)

where ε is the error, and θ is a vector of parameters to be estimated in

function g. If g assumes a non-linear format in terms of X , we are facing a

non-linear regression. Suppose X = (x1, · · · , xm)τ , Y = (y1, · · · , ym)τ . We

define

fi(θ) = yi − ŷi = yi − g(xi|θ) (3.10)

The non-linear least square regression is to find θ̂ which minimizes F (θ̂),

where F (θ) is defined as

F (θ) =
1

2

m
∑

i=1

(fi(θ))
2 =

1

2
‖f(θ)‖2 =

1

2
f(θ)τf(θ). (3.11)

There are many non-linear algorithms for finding θ̂. These well-developed

algorithms include the Gauss-Newton method, the Levenberg-Marquardt

method, and Powell’s Dog Leg method (see [7] for example). In this study,

we use the Gauss-Newton method. It is based on the implementation of

first derivatives of the components of the vector function. In special cases,

it can give quadratic convergence as the Newton-method does for general

optimization [8]. The Gauss-Newton method is based on a linear approxi-

mation to the components of f (a linear model of f) in the neighborhood

of θ: For small ‖h‖, we see from the Taylor expansion that

f(θ + h) ≈ `(θ) := f(θ)J(θ)h, (3.12)
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where J is the Jacob matrix. Inserting this to the definition for F , we obtain

F (θ + h) ≈ L(θ) :=
1

2
`(h)t`(h) =

1

2
f tf + htJ tf +

1

2
htJ tJh

= F (θ) + htJ tf +
1

2
htJ tJh. (3.13)

The Gauss-Newton step ĥ minimizes L(h). In practice, the Gauss-Newton

least square fitting the baseline hazard function can be achieved by using

MATLAB software.

3.3. Neural Network Testing

In the Cox model, the main interest is usually about the parameter vector

β. However, when one is interested in making predictions about the failure

time for a given set of covariates, or when one assumes a parametric family

for the baseline hazard function, just as what we have performed, then

testing that h0 is equal to a specified hazard rate function or evaluating

how stable h0 is for varying data source becomes important [12]. In the

field survival analysis, there are two popular methods in order to test a

model. One is to use 1/2 or 2/3 of the time scale in the survival data

to determine the parameters and then use the whole data set to examine

the model. In our study, however, to the short length of data (total of

66 rows, in which approximately two-thirds are censored) and the high

data demand from MLE (refer to section 3.1), this solution is not feasible.

Another way is to use the whole data set to set up the model and then use

a resample method to check the model. This solution also has a problem on

the principle by which we resample the original data. As we have known,

MLE relies heavily on the given data set especially when the length of data

is not exceptionally long. If we randomly resample the original data, the

selected data for testing may be far from the “pattern” of the whole data

set, e.g., having quite different mean and standard deviation.

In this study, we propose an artificial neural network testing model.

First, we let the neural network “learn” the patients’ survival pattern from

the given hospital data. We then use the neural network to generate a

long list of “virtual data” and “simulate” the survival pattern to test our

covariate estimation and baseline hazard estimation. By this process, we

also show that the neural network has great potential as a research tool in

survival analysis.

The conception of neural network came up as early as the middle of this

century. A Neural Network (NN) is an information processing paradigm
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that is inspired by the way biological nervous systems, such as the brain,

process information. Simply speaking, it is software that is “trained” by

having its examples of input and the corresponding desired output pre-

sented to it.

Neural networks, with their remarkable ability to derive meaning from

complicated or imprecise data, can be used to extract patterns and de-

tect trends that are too complex to be noticed by either humans or other

computer techniques. A trained neural network can be thought of as an

“expert” in the category of information it has been required to analyze.

The typical structure of neural network consists of a layer of d (the

dimension of the futures) input units, a layer of output units, and a vari-

able number of hidden layers of units, as shown in Figure 1. Generally

more layers result in higher accuracy, but also are more time-consuming on

computation.

The construction of the NN for this study and test results will be shown

in the next section.

Fig. 1. Typical Structure of Neural Network.

4. Application to Lung Cancer Data

4.1. Data Structure

A data set records the survival times (S−INT, in months) of the patients

seen at Vanderbilt University School of Medicine Hospital. The data set

also records patients’ hospital condition including

PT : patient term, ranges from T1 to T4
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PN : occurrence of lymph notes, a symptom of cancer invasion, ranges

from N0 to N2

STAGE: pathological diagnosis of cancer and it is ordinal, ranges from

1A to IV

DF−INT : disease free time, in months

GRADE: the fitness condition when patient in hospital, ranges from

well to poor

STATUS: indicating if the patient is still alive (A) or deceased (D). If

the STATUS of a patient is “A” (alive), this row of data is censored.

In our study, we take PT, PN, STAGE, DF−INT , and GRADE six

variables as covariates to be estimated. The original hospital data set

records information for 66 patients and is listed in Appendix 1.

4.2. Estimation for Covariates

The proportional hazard regression to estimate β is performed by SPSS.

The results are shown in Appendix 2:

The Cox regression gives the mean and standard deviation for each

covariate in given data. The β is estimated at a certain significance level.

For “patient term” and “grade,” β is positive, which means a higher value

for these two variables will result in higher hazard or risk of death. For

“disease free time,” β assumes a negative value. This means that the longer

the patient is disease free, the less likely that he or she will die shortly,

which is reasonable. The β values for PN and STAGE are both near zero,

which indicates that these two variables do not associated much with the

hazard rate.

The Cox regression gives baseline cumulative hazard and overall cumu-

lative hazard vs. survival time, at mean value of covariates. To estimate the

hazard function, we fix the covariates at their mean values, then use least

square regression to estimate the parameters a and b in (2.20), by fitting

two columns of data in the survival table in Appendix 2.

4.3. Estimation for Baseline Hazard Function

Starting from the results of the Cox regression, let

Xτ = SurvivalTime = [1 2 3 4 5 6 8 9 11 16 17 18 33],

Hτ = CumBaselineHazard

= [.006 .010 .022 .029 .037 .054 .065 .089 .129 .163 .303 .377 .991].
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Following the Gauss-Newton least square estimation discussed by sec-

tion 3.2, we find estimations for a and b. The MATLAB computation results

are summarized below.

FITTEDMODEL =

General model:

FITTEDMODEL(x) = a/b*(x-1/b*(1-exp(-b*x)))

Coefficients (with 95% confidence bounds):

a = 0.002185 (0.001524, 0.002845)

b = 0.01727 (-0.01574, 0.05029)

GOODNESS =

sse: 0.0129

rsquare: 0.9854

dfe: 11

adjrsquare: 0.9840

rmse: 0.0342

OUTPUT =

numobs: 13

numparam: 2

residuals: [13x1 double]

Jacobian: [13x2 double]

exitflag: 1

iterations: 7

funcCount: 22

firstorderopt: 1.4601e-004

algorithm: ’Gauss-Newton’

The estimated baseline hazard function is

h0(t) = 0.1265(1− exp(−0.01727t)) (4.1)

Figure 2 shows the fit for the cumulative baseline hazard. Figure 3 plots

the baseline hazard as a function of time.

4.4. Survival Model Testing

With the help of MATLAB command newff, a feed-forward backpropaga-

tion network is constructed to simulate the survival model. This network

has a total of three layers: an input layer of dimension 6, a hidden layer of

dimension 3, and an output layer of dimension 1. The unit of output layer

may assume a value of “0” or “1”, representing “alive” and “dead” respec-

tively. More hidden levels are proven not to improve NN performance. Since
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Fig. 2. Fit for Cumulative Hazard.

Fig. 3. Baseline Hazard as a Function of Time.

the output values assume only two possible values, we use logsig as the

nonlinear transfer function between layers.

When having traingda/learngdm as the training/learning function, the

NN reaches best performance, and the error rate for training set is 9%. The

error rate is defined as the rate of false “alive-dead” judgment for all 66

training cases. The network performance is shown in Figure 4.

After the NN is set up, we generate a 1000 × 6 matrix to

simulate 1000 patients’ record. Each column of the matrix corre-

sponds to a covariate, and each row stores a patient’s information

on PT, PN, STAGE, S−INT, D−INT , and GRADE. Then we use the

trained NN to judge the STATUS of the patient, as we “believe” the NN
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Fig. 4. Network Performance over Epochs.

has learned the “right” survival pattern of lung cancer patients.

At first, we generate the data for each column randomly and uniformly

distributed in the domain. For example, the domain for PN column is the

closed interval [1, 4]. All numbers are rounded to integers. After a Cox

regression analysis, the computation cannot be converged. This result shows

that randomly generated data is not acceptable. The covariates for lung

cancer patients must be distributed with a certain pattern.

Recall the Cox regression results for original hospital data. The mean

and standard deviation for each covariate are calculated. Respecting this

result, another 1000×6 matrix is generated. For each column, the generated

data assume normal distribution with a corresponding mean and standard

deviation that are rounded to integers (disregarding that the rounding may

shift the mean and deviations for each column).

After a Cox regression and a least square fit for the cumulative baseline

hazard as we did before, the baseline hazard for the NN generated data is

plotted as a function of time. It is compared to the baseline hazard function

we found before for the original hospital data, as shown in Figure 5.

Further more, define the score function

s(x, β) = xτ · β. (4.2)

Then the hazard function changes to be

h(t|xi) = h0 exp(s). (4.3)

The score function determines the risk of death. The higher score, the more

likely a patient will die (or will die sooner).
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Fig. 5. Estimated Baseline Functions.

A scatter plot for “score vs. survival time” is shown in Figure 6. Notice

that time assumes a negative value if it is censored (patient is still alive.)

Fig. 6. Scores vs. Time to Death or Censoring.

Figure 6 shows that when a patient scores negative or very small value,

he or she tends to survive; the lower the score is, the longer he or she will

live. On the other hand, a high positive score means death. This proves that

proportional hazard regression is a beneficial way to estimate β coefficients.

Final Remarks: 1. In this study, we set up a survival model for lung

cancer patients. This was achieved by three steps: using proportional hazard

regression to estimate the coefficients for five covariates, using non-linear

least square fit to estimate the exponential baseline hazard function, and

using a neural network to exam the survival model. The analysis tools used
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in this research were SPSS, EXCEL and MATLAB.

2. MLE is a powerful statistical tool but it has its own limitation. When

the data length is short, MLE might be heavily biased. In this study, there

were data for 66 patients, but two thirds were censored and only one third

is used in MLE. The shortage of data resulted in a unideal significance level

of the estimation.

3. Neural network simulation is a new idea for testing the model, es-

pecially when the original data set is short. Neural network application in

survival analysis has promising prospects.

4. Although we assume a linear combination format in the score func-

tion, the five covariates are believed to be correlated with each other. A

randomly generated covariate matrix may not result in a convergent Cox

regression.

5. When the NN generated data assume the same mean and SD with

the original data, they tend to have similar baseline hazard functions by

LSE. This supports our assumption on the format of baseline function.

6. The score function provides a good indication for the risk of death.

This supports the Cox regression for β estimation.

7. In future work, we may do regression for longer hospital data for a

more stable β estimation and attempt to find out the correlation among

the parameters, assuming a more accurate model for f(x|β) in the hazard

function and re-formulate the MLE in proportional hazards regression. This

is quite complex work but truly worth to do. We may also explore more

NN applications in survival analysis.

8. In survival analysis with long-term survivors, handling situations con-

sisting of a proportion of subjects under study that may never experience

the event of interest, one proposes to formulate the model as a mixture of

long-term survivors (subjects that will never “fail”) and susceptibles (sub-

jects that will “fail” eventually). In [18], comparing (4.3), the hazard rate

function is modeled as h(t|xi) = h0(t) exp(s) with h0(t) = pf0(t)
1−pF0(t)

and

0 < p ≤ 1, here, f(t) and F (t) are defined in (2.1). Partial likelihood and

full likelihood are then used to obtain the estimators of the coefficients of

covariates and the proportion of long-term survivors.
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Appendix 1: Patients Data

# PT PN STAGE STAT S−INT DF−INT GRADE

1 T1 N2 IIIA D 11 5 mod

2 T4 N2 IIIB D 11 9 poor

3 T1 N1 IV D 17 0 poor

4 T2 N0 IB A 24 24 well-mod

5 T2 N0 IV D 9 0 mod-poor

6 T2 N2 IIIA A 21 7 well-mod

7 T4 N0 IV D 1 1 poor

8 T1 N0 IA A 21 13 well-mod

9 T3 N0 IIB D 2 0 mod-poor

10 T2 N0 IB A 20 20 mod

11 T1 N0 IA D 3 3 mod

12 T2 N0 IB A 23 23 poor

13 T1 N0 IA D 8 8 mod-poor

14 T2 N1 IIB A 21 21 mod

15 T2 N0 IB A 20 20 mod

16 T2 N0 IB D 33 30 mod-poor

17 T2 N0 IB A 18 18 mod-poor

18 T2 N2 IIIA D 6 0 poor

19 T2 N2 IIIA D 3 3 mod-poor

20 T1 N1 IIA D 5 0 poor

21 T2 N2 IIIA A 21 17 poor

22 T2 N0 IB A 23 10 mod-poor

23 T2 N0 IB A 26 26 well-mod

24 T2 N0 IB A 26 26 mod

25 T1 N2 IIIA D 18 0 poor

26 T2 N1 IIB A 17 17 mod-poor

27 T2 N0 IIB A 33 9 mod

28 T2 N0 IB D 17 17 mod

29 T2 N0 IIB A 42 42 mod-poor

30 T2 N0 IIB D 16 5 poor

31 T1 N1 IIA D 1 0 poor

32 T2 N0 IB D 17 15 poor

33 T2 N2 IIIA D 9 0 poor

34 T2 N2 IIIA D 4 0 mod-poor
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Appendix 1: Patients Data (Cont.)

# PT PN STAGE STAT S−INT DF−INT GRADE

35 T2 N0 IB A 2 1 poor

36 T2 N0 IB A 5 1 well-mod

37 T2 N2 IIIA A 6 6 mod

38 T1 N0 IA A 1 1 well

39 T1 N0 IA A 1 1 mod

40 T1 N0 IA A 3 3 mod-poor

41 T1 N0 IA A 1 1 mod-poor

42 T1 N0 IA A 1 1 well-mod

43 T3 N0 IIB A 1 1 well

44 T1 N0 IA A 1 1 poor

45 T2 N0 IB A 2 2 poor

46 T2 N0 IB A 1 1 well-mod

47 T2 N0 IB A 1 1 mod

48 T1 N0 IA A 12 0 mod-poor

49 T1 N2 IIIA A 6 4 mod-poor

50 T2 N0 IB A 1 1 mod

51 T2 N0 IB A 3 3 poor

52 T3 N0 IIB A 10 4 poor

53 T3 N1 IIIA D 6 6 poor

54 T2 N0 IB A 1 0 mod

55 T4 N1 IIIB A 2 0 mod-poor

56 T2 N0 IB A 1 1 mod

57 T2 N0 IB A 1 1 mod-poor

58 T2 N0 IB A 5 4 poor

59 T1 N2 IIIA A 1 1 poor

60 T1 N0 IA A 1 1 mod

61 T1 N0 IA A 7 7 poor

62 T2 N0 IB A 2 2 mod

63 T2 N1 IIB A 1 1 mod

64 T2 N2 IIIA A 11 4 poor

65 T1 N0 IA A 10 3 poor

66 T1 N0 IA A 1 1 poor
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Appendix 2: Cox Regression Results

Covariate Means

Mean

PT 1.833

PN .515

STAGE 3.000

D−FREE6.879

GRADE 2.788

Survival Table

At mean of covariates

Time Baseline Cum Hazard Survival SE Cum Hazard

1.00 .006 .983 .012 .017

2.00 .010 .971 .018 .029

3.00 .022 .939 .030 .062

4.00 .029 .922 .036 .082

5.00 .037 .903 .042 .102

6.00 .054 .860 .053 .151

8.00 .065 .835 .061 .181

9.00 .089 .780 .073 .248

11.00 .129 .698 .091 .359

16.00 .163 .635 .105 .455

17.00 .303 .431 .123 .842

18.00 .377 .350 .121 1.050

33.00 .991 .064 .115 2.755


