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ABSTRACT. – Spatial distributions and movements of aquatic animals are typically defined by the
dimensions of the aquatic system in which they live. Aquatic turtles often confound such
definitions with terrestrial movements, and movements within the aquatic system remain largely
undescribed. We studied the movements of adult female painted turtles (Chrysemys picta) and red-
eared sliders (Trachemys scripta) in Reelfoot Lake, a large aquatic system. We determined the
distance moved, home-range size, and habitat use to investigate interspecific variation, as well as
the influence of habitat dimensions on turtle spatial ecology. Daily movements peaked for both
species between May and August. Trachemys scripta exhibited longer movements, maintained
larger home ranges, and selected deeper areas of the lake than did C. picta. Compositional analysis
indicated that the shoreline habitat was used most frequently by both species, relative to its
availability. However, although C. picta selected the shoreline above all other habitat types, T.
scripta selected the open water areas of the lake as well. Morphological differences and dietary
preferences likely explain much of the interspecific variation we observed. Turtle movements and
home-range sizes we report are remarkably larger than previous estimates and may be related to
the abundance of suitable habitat within Reelfoot Lake. These results demonstrate that turtle
spatial ecology is strongly influenced by local environmental factors and illustrate the potential
pitfalls of describing ‘‘typical’’ movements of aquatic turtles.

KEY WORDS. – Reptilia; Testudines; Emydidae; Chrysemys; Trachemys; turtle; movements; home
range; habitat use; compositional analysis; telemetry; lake; Tennessee; USA

Freshwater turtles use a range of terrestrial and

aquatic habitats throughout their relatively long lives, and

their movements represent an important ecological link

between these two ecosystems (Gibbons et al. 1990). In

general, turtle movements fall into two categories: long-

distance (i.e., dispersal or migration among adjacent

aquatic habitats), and short distance (i.e., routine move-

ments within a single body of water). Many of the causes

and consequences of the long distance movements of

aquatic turtles, particularly with respect to nesting and

road mortality, have been described in some detail

(Congdon and Gatten 1989; Steen and Gibbs 2004;

Bowne et al. 2006). In contrast, the factors that influence

the spatial ecologies of aquatic turtles within the aquatic

system remain yet to be thoroughly explored. Several

factors can influence turtle spatial ecology including age,

sex, reproductive condition, and habitat characteristics

(Plummer et al. 1997). In addition to these intraspecific

factors, differences between species (e.g., in morphology,

diet, or habitat preferences) can lead to differences in

space use (Lindeman 2000; Ryan et al. 2008). A positive

relationship between habitat dimensions (i.e., stream

width) and turtle home-range size has been documented

in lotic systems (Schubauer et al. 1990; Plummer et al.

1997). Although a similar relationship likely exists in

lentic systems, none has been documented.

The painted turtle (Chrysemys picta) and red-eared

slider (Trachemys scripta) are among the most abundant

turtles in the southeastern United States and co-occur

throughout much of their respective ranges (Conant and

Collins 1998). Chrysemys picta is notably smaller than T.
scripta and typically inhabits shallower bodies of water.

The diets of each species are known to vary substantially

according to local availability and consist of a combina-

tion of plant and animal material (Knight and Gibbons

1968; Padgett et al. 2010). Descriptions of C. picta space

use have neglected the southern subspecies (Chrysemys
picta dorsalis). Such comparative data could potentially

reveal any latitudinal gradients with respect to space use.

The unique evolutionary history of C. p. dorsalis (see

Starkey et al. 2003) adds further value to such

investigations.

With a few notable exceptions (e.g., Schubauer et al.

1990; Bodie and Semlitsch 2000), previous reports of

C. picta and T. scripta spatial ecology are based on

populations inhabiting relatively small aquatic systems

including streams (Moll and Legler 1971; Florence 1975;

MacCulloch and Secoy 1983), canals (Ryan et al. 2008),

ponds (Zweifel 1989), and wetlands (Rowe 2003; Tran et

al. 2007). Monitoring the movements of aquatic turtles

within these small aquatic systems permits a thorough

description of daily activity and behavior. However, these
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same aquatic systems may ultimately restrict turtle

movements and can lead to a somewhat limited view of

their spatial ecology. Here, we describe the movements,

home range, and habitat use of C. picta and T. scripta in

a large aquatic system: Reelfoot Lake, Tennessee. We

consider the effects of body size, diet composition, and

habitat use on the spatial ecologies of these sympatric

turtles. Finally, we consider the potential influence of

habitat dimensions and quality on turtle space use.

METHODS

Study Site. — Reelfoot Lake is a 7250-ha aquatic

system located in northwest Tennessee in the southeastern

United States (long 89u269W, lat 36u239N). Formed

during a series of earthquakes along the New Madrid

fault zone in 1811–1812 (Van Arsdale et al. 1998), today

much of Reelfoot Lake consists of ecotones that link

4400 ha of shallow open water (approximately 1.5 m

deep) and 2850 ha of flooded bottomland forest. Reelfoot

Lake wetlands are dominated by bald cypress (Taxodium
distichum) and emergent vegetation including saw grass

(Cladium jamaicense), swamp loosestrife (Decodon
verticillatus), spatterdock (Nuphar luteum), and American

lotus (Nelumbo lutea). In addition to painted turtles (C.
picta) and red-eared sliders (T. scripta), the lake supports

populations of common snapping turtles (Chelydra
serpentina), false map turtles (Graptemys pseudogeogra-
phica), common musk turtles (Sternotherus odoratus),

eastern mud turtles (Kinosternon subrubrum), eastern

river cooters (Pseudemys concinna), and spiny softshell

turtles (Apalone spinifera).

Radiotelemetry. — From May through June 2006,

turtles were collected using sardine-baited hoop nets from

Blue Basin, the largest and southernmost portion of

Reelfoot Lake, as part of a more comprehensive

demographic study. Standard morphometric measure-

ments were recorded for each turtle (e.g., straight-line

carapace length, straight-line plastron length, mass,

secondary sexual characteristics). Because one of the

original objectives was to identify nesting sites for C.
picta and T. scripta, only gravid females were selected for

telemetry. The presence of calcified eggs was determined

using radiography (Gibbons and Greene 1979). Radio-

transmitters (SI-2FT, 12 g; Holohil Systems Ltd, Ontario,

Canada) were attached to the posterior marginal scutes

using two stainless steel screws. The total weight of the

transmitter package averaged 4.0% and 1.5% of turtle

body weight for C. picta and T. scripta, respectively. The

estimated lifespan of each transmitter was approximately

20 mo at 25uC. Twenty turtles were initially outfitted with

radio-transmitters in 2006 (10 C. picta, 10 T. scripta).

During the first season, three turtles were lost because of

predation and four because of transmitter failure. It is

unclear whether the presence of the transmitter directly

influenced mortality in this study. In 2007, transmitters

were attached to 2 additional C. picta and 3 additional T.

scripta, resulting in a total of 25 radio-tracked turtles

between May 2006 and August 2007 (n 5 7 in 2006 only;

n 5 4 in 2007 only; n 5 14 in both 2006 and 2007).

All turtles were released at their original point of

capture within 24 hrs and subsequently relocated using a

hand-held receiver (Model R1000; Communications

Specialists, Inc, Orange, CA) and a three-element Yagi

antenna. Telemetry was conducted primarily by boat but

also on foot when necessary. The frequency of turtle

relocations varied according to turtle activity (Rasmussen

and Litzgus 2010). Turtles were relocated two to three

times per week during the active season and approxi-

mately once every 2 wks throughout the winter months. A

handheld GPS (eTrex Legend Cx; Garmin International,

Inc, Olathe, KS) was used to record the geographic

location of each turtle, with an accuracy range of

approximately 7 m. The coordinates of each turtle

location were verified using field notes and aerial

photographs. Coordinates were converted from a geo-

graphic coordinate system (D.dd) to a Universal Trans-

verse Mercator (UTM) coordinate system (NAD83, Zone

16) for all spatial analyses.

Turtle Movements. — Straight-line distances between

successive point locations were calculated using ArcGIS

v. 9.2 (Environmental Systems Research Institute, Inc,

Redlands, CA). To estimate the distance each turtle

moved in a single day, the distance between successive

points was divided by the number of days between

relocations. This method provides the minimum distance

moved between points and likely underestimates the

turtle’s actual movements (White and Garrot 1990;

Millspaugh and Marzluff 2001) but is useful for purposes

of comparison. Using the individual as the unit of

replication, mean daily movements were calculated for

each turtle. These data failed the assumptions of

normality and equality of variance despite transforma-

tions; therefore, a nonparametric Mann–Whitney rank

sum test was used to compare the two species. Temporal

patterns of turtle movement were examined by averaging

an individual’s daily movements for each month. These

values were then log-transformed to meet the assumptions

of normality and equality of variance and compared using

a two-way repeated-measures ANOVA to examine the

effect of species and month on turtle movements.

Home Range. — Home ranges were determined using

two methods: (1) minimum convex polygon (MCP); and (2)

95% fixed kernel (FK). The MCP method calculates the

smallest convex area encompassing every point location for

an individual (Mohr 1947), whereas, the FK method

produces a use distribution to describe the probability of

locating an individual in a given area (Worton 1989). We

also estimated sizes of turtle ‘‘activity centers’’ using the

50% FK method. Calculations were performed using the

Animal Movement Extension (Hooge and Eichenlaub 2000)

for ArcView v. 3.2 (Environmental Systems Research

Institute). Smoothing factors (h) for the FK estimates were

calculated using least-squares cross-validation (Seaman and
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Powell 1996). Incremental area analysis was used to

examine the relationship between home-range size and

sampling intensity (Dreslik et al. 2003). Home-range size

estimates failed the assumptions of normality and equality of

variance despite transformations; thus, nonparametric

Mann–Whitney rank sum tests were used to compare the

two species.

Habitat Use. — To estimate microhabitat use,

distance to shore and water depth were measured. When

turtles were found within the boundaries of the lake, the

distance of each relocation to the nearest shore was

measured using a laser range-finder (Yardage Pro Sport,

Bushnell, Overland Park, KS) and verified in ArcGIS v.

9.2. Water depth at each turtle relocation in 2007 was

measured to the nearest 0.25 m using a weighted line

(water depth was not recorded for relocations in 2006).

These data failed the assumptions of normality and

equality of variance despite transformations; therefore, a

nonparametric Mann–Whitney rank sum test was used to

compare the two species. To quantify macrohabitat use,

Reelfoot Lake was divided into four broad macrohabitat

types: (1) flooded forest (FOR; seasonally flooded

hardwood forest); (2) open water (OW; 1–3 m deep, with

numerous submerged cypress trees); (3) shoreline (SHR;

edge habitat; , 1 m deep, within 25 m of shore); and (4)

field (FLD; cropland adjacent to the lake). Geographic

boundaries for each habitat type were delineated based on

2006 National Wetlands Inventory data (www.nwi.fws.

gov) and manually adjusted in ArcGIS v. 9.2 using a 1-m

ground resolution color digital orthophoto quarter quad-

rangle aerial photograph.

Compositional analysis was used to assess habitat

selection of C. picta and T. scripta (Aebischer et al. 1993).

For each turtle, habitat ‘‘availability’’ was defined as the

proportions of each macrohabitat type within the MCP

home range, and the frequencies of turtle relocation points

within each macrohabitat type were viewed as the ‘‘used

habitats’’ (Rasmussen and Litzgus 2010). Compositional

analyses were performed in R v. 2.13 (R Core Development

Team, Vienna, Austria) using the ‘‘adehabitat’’ package

(Calenge 2006). Treatment of missing habitat types was

dealt with according to Aebischer et al. (1993), by replacing

values of 0% with a value an order of magnitude less than

the smallest recorded nonzero proportion. All statistical

analyses were performed in R v. 2.13. All means are

reported ± 1 SE.

RESULTS

Turtle Movements. — Twelve gravid female C. picta
and 13 gravid female T. scripta were radio-tracked

between May 2006 and August 2007, yielding a total of

782 turtle relocations: 335 for C. picta and 447 for T.
scripta. Estimates of daily movements of C. picta and T.
scripta were 83.9 ± 13.4 and 212.9 ± 30.0 m/d, respec-

tively, and differed significantly between species

(U 5 16, p , 0.001). The distances between successive

relocations were short (, 50 m/d); however, several long-

distance movements were observed for both species

(Fig. 1A). Two-way repeated-measures ANOVA revealed

significant effects of both species (F1,135 5 9.071,

p 5 0.003) and month (F11,135 5 13.486, p , 0.001) on

turtle movements. The distances between successive

relocations were highest between the months of May

and August for both species (Fig. 1B). The movements of

both species decreased during the winter months, but

turtles maintained some level of activity.

Home Range. — All radio-tracked turtles were

included in movement analyses; however, individuals

monitored for less than 3 mo or with fewer than 17

relocations were excluded from home-range analyses to

ensure robust estimates. This permitted the analysis of 10

C. picta and 12 T. scripta. Incremental area analysis did

not reveal any sampling biases for the remaining

individuals; bootstrap estimates of MCP home-range size

reached an asymptote for each turtle (Fig. 2). Minimum

convex polygon (MCP) home-range estimates for C. picta
and T. scripta were 89.0 ± 25.3 ha and 327.6 ± 81.6 ha,

respectively. Ninety-five percent FK home-range esti-

mates for C. picta and T. scripta were 168.5 ± 79.6 ha

and 465.9 ± 126.0 ha, respectively. Trachemys scripta
exhibited significantly larger home ranges than did C.
picta using both methods (MCP: U 5 23, p , 0.05; FK:

U 5 26, p , 0.05). Sizes of ‘‘activity centers’’ for C.
picta and T. scripta estimated using the 50% FK were

40.5 ± 23.6 ha and 71.6 ± 20.7 ha, respectively, and did

not differ between the species (U 5 31, p . 0.05).

Habitat Use. — Both species favored the shallow

areas of the lake near the shoreline, but T. scripta also

frequented the deeper water further from shore. Water

depth at turtle relocations differed significantly (U 5 15,

p , 0.01), averaging 0.62 ± 0.05 m for C. picta and

1.51 ± 0.15 m for T. scripta (Fig. 1C). On average, C.
picta and T. scripta were located 13.6 ± 2.9 m and

177.8 ± 35.7 m from the shoreline, respectively. Shore-

line distances differed significantly between the species

(U 5 1, p , 0.001; Fig. 1D). Compositional analysis

provided further evidence of habitat selection for both

C. picta and T. scripta (Table 1; Fig. 3). Here, ‘‘...’’

indicates statistical significance at a 5 0.05. Chrysemys
picta significantly selected the shoreline habitat over the

open water and flooded forest and all habitats to the open

field habitat (SHR ... OW . FOR ... FLD). In

contrast, T. scripta significantly selected both the

shoreline and open water habitats over the flooded forest

and field habitats (SHR . OW ... FLD . FOR).

DISCUSSION

The movements of adult female C. picta and T.
scripta at Reelfoot Lake reveal strong seasonal trends.

Egg production in these turtles peaks from mid-May to

early June (Collins et al. 1997; Cobb 2008), which

corresponds with the increase in activity observed in the
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present study. According to the ‘‘reproductive strategies

hypothesis,’’ female turtles are expected to move furthest

in late spring and early summer while gathering resources

for the production of egg clutches and locating suitable

nesting habitats (Morreale et al. 1984). Such patterns have

been documented in Chelydra serpentina (Obbard and

Brooks 1980), Apalone mutica (Plummer and Shirer

1975), Graptemys flavimaculata (Jones 1996), and

Emydoidea blandingii (Rowe and Moll 1991). However,

Arvisais et al. (2002) found no difference in activity

levels between male and female Glyptemys insculpta, and

Doody et al. (2002) observed no behavioral differences

between gravid and nongravid Carettochelys insculpta, as

the ‘‘reproductive strategies hypothesis’’ would predict.

The increase in turtle activity measured in the

summer may also be in response to changes in air or

water temperature (Gibbons 1967; Ernst 1972; Grayson

and Dorcas 2004). Water temperature was significantly

correlated with the frequency and distance moved by

Macrochelys temminckii (Harrel et al. 1996); yet the

activity levels of C. picta in a small marsh in Michigan

were independent of environmental temperatures (Rowe

2003). Although turtles in cooler climates become

inactive throughout much of the winter (Ultsch 2006;

Greaves and Litzgus 2007; Ryan et al. 2008), turtles at

Reelfoot Lake maintained low levels of activity all year

despite carapace temperatures as low as 2.5uC (V.A.

Cobb, unpubl. data, 2007).

Trachemys scripta moved further, maintained larger

home ranges, and used deeper water further from shore

than did C. picta. Chrysemys picta were exclusively found

in water , 1 m deep and only rarely ventured . 50 m

from the shoreline, whereas T. scripta seemed to use a

greater variety of habitats at Reelfoot Lake. Even at

distances . 500 m from shore and depths . 2 m, we

observed turtles moving in the water column and basking

on cypress stumps. A number of factors have been

identified that may influence spatial behavior, both within

and among species (Perry and Garland 2002). Within a

given environment, the size of an animal’s home range

may be related to its age, sex, reproductive condition,

morphology, or diet (Harestad and Bunnell 1979;

Gompper and Gittleman 1991; Galois et al. 2002; Litzgus

and Mousseau 2004). Because we selected gravid female

turtles for telemetry, factors such as age class, sex, and

reproductive condition cannot fully explain the differenc-

es we observed between C. picta and T. scripta at

Reelfoot Lake. Schubauer et al. (1990) reported a

correlation between home-range size and carapace length

for female T. scripta in South Carolina. Jaeger (2008)

found no such relationship between individual body size

and daily movements or home-range size for either

Figure 1. Daily distances moved, water depths, and distances from shore at relocations for adult female Chrysemys picta (n 5 12)
and Trachemys scripta (n 5 13) at Reelfoot Lake. (A) Distances moved per day. Note that both species exhibited movements . 600
m/d. (B) Seasonal movements; bars represent monthly averages of daily movements ± 1 SE. (C) Water depths at relocation, based on
95 relocations for C. picta and 218 for T. scripta. (D) Distances from shore of relocation, based on 129 relocations for C. picta and 365
for T. scripta. Note that T. scripta were occasionally found . 600 m from shore.
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species at Reelfoot Lake; however, it should be noted that

the straight-line carapace lengths of telemetered turtles

did not vary substantially within either species. Monitor-

ing the movements of individuals of more varied sizes

may be necessary to reveal a relationship between body

size and spatial ecology.

Although our results suggest that morphology does

not account for the variation within each species,

fundamental morphological differences between C. picta
and T. scripta likely account for the interspecific patterns

we observed. Trachemys scripta are larger and have

longer limbs than C. picta (Conant and Collins 1998). As

expected, T. scripta were frequently relocated several

hundred meters from the edge of the lake; yet C. picta

Figure 2. Incremental area analysis of minimum convex polygon (MCP) home-range estimates for adult female Chrysemys picta
(n 5 10) and Trachemys scripta (n 5 11) at Reelfoot Lake. Bootstrap estimates of each turtle’s MCP home range reached an
asymptote as sampling effort (i.e., number of relocations) increased, indicating an absence of sampling bias.

Table 1. Results of compositional analysis (Aebischer et al.
1993) indicating macrohabitat selection (SHR 5 shoreline,
OW 5 open water, FOR 5 flooded forest, FLD 5 field) by
adult female Chrysemys picta (n 5 10) and Trachemys scripta
(n 5 11) radio tracked between May 2006 and August 2007
at Reelfoot Lake. Habitat types are ranked in order of most (1)
to least (4) selected. Matrices of pairwise comparisons and
associated p-values are provided (* indicates significant
difference at a 5 0.05).

Species OW FOR FLD Rank

C. picta
SHR 0.0012* 0.0111* 0.0001* 1
OW 0.0010* 0.0648 3
FOR 0.0258* 2
FLD 4

T. scripta
SHR 0.4743 0.0005* 0.0005* 1
OW 0.0010* 0.0012* 2
FOR 0.4598 4
FLD 3

Figure 3. Macrohabitat use by adult female Chrysemys picta
(n 5 10) and Trachemys scripta (n 5 11) at Reelfoot Lake. See
Methods for description of habitat types.
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were never found more than 40 m from the shoreline and

were consistently in water less than 1 m deep. Both

species favored the shoreline, but T. scripta also used the

open water habitat at Reelfoot Lake. Larger turtle species

may be better able to swim long distances more quickly

(Gibbons et al. 1990; Pace et al. 2001) and may be better

equipped to effectively forage in deeper water (Lindeman

2003).

The morphological differences between C. picta and

T. scripta may also lead to energetic differences. Larger

species tend to require more resources than smaller ones,

which may force them to move further and maintain

larger home ranges to obtain sufficient food resources

(Perry and Garland 2002). Both species are omnivorous;

their diets are quite variable and reflect local abundances

of food items (Knight and Gibbons 1968; Parmenter and

Avery 1990; Padgett et al. 2010). Stomach contents were

not examined in the present study; therefore, we can only

speculate on the effect of dietary preferences on turtle

movements at Reelfoot Lake. Historically, C. picta at

Reelfoot Lake fed primarily on aquatic plants (Parker

1939), whereas as much as half of the diet of T. scripta at

other locations may consist of animal matter (e.g.,

invertebrates and fish carrion; Marchand 1942; Lindeman

2000). A more carnivorous diet of T. scripta would

potentially explain our observations. Trauth et al. (2004)

Table 2. Published estimates of minimum convex polygon home-range size for Chrysemys picta and Trachemys scripta inhabiting
aquatic systems of various sizes.

Species Location Habitat type Habitat size (ha) Home range (ha) Reference

C. picta Michigan Marsh 0.8 0.7 Rowe 2003
Saskatchewan River – 6.0 MacCulloch and Secoy 1983
Pennsylvania Pond 59.0 21.6 Saba and Spotila 2003
Ohio Marsh 3600.0 50.0 Tran et al. 2007
Tennessee Lake 4400.0 89.0 Present study

T. scripta Tennessee River 45.0 0.7 Florence 1975
Panama River – 3.6 Moll and Legler 1971
Indiana Canal 21.0 4.4 Ryan et al. 2008
Pennsylvania Pond 59.0 24.7 Tran et al. 2007
South Carolina Lake 1056.0 36.5 Schubauer et al. 1990
Tennessee Lake 4400.0 327.6 Present study

Figure 4. Published estimates of minimum convex polygon (MCP) home-range size show positive relationships relative to the size of
available habitat for Chrysemys picta (r2 5 0.94, p , 0.01) and Trachemys scripta (r2 5 0.70, p 5 0.08). Note that both axes are log-
transformed.
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suggested that T. scripta may out-compete the smaller C.
picta where they occur sympatrically, resulting in smaller

body sizes and lower population densities of C. picta. We

found no evidence of any direct competition between

these two turtle species. An analysis of contemporary

dietary preferences of these turtles could potentially

elucidate the movement patterns we observed.

Both C. picta and T. scripta are capable of long-

distance movements. MacCulloch and Secoy (1983)

described multiple instances of C. picta moving . 5 km

between sightings in a Saskatchewan river, whereas

individuals of the Michigan population studied by Rowe

(2003) moved an average of 83.8 m/d. Ryan et al. (2008)

documented average movements of . 250 m/d for T.
scripta inhabiting an Indiana canal. Movement estimates

for closely related Pseudemys concinna include 122 m/d

in an Illinois pond (Dreslik et al. 2003) and . 1.5 km/d in

a Florida river (Kornilev et al. 2010).

Documented home-range sizes of C. picta and T.
scripta are quite variable; yet all are notably smaller than

those reported herein (Table 2). In the present study, C.
picta moved as far as 800 m/d and maintained relatively

large home ranges (MCP 5 89.0 ha; FK 5 168.5 ha).

Similarly, these estimates of T. scripta movements (up to

1.6 km/d) and home-range size (MCP 5 327.6 ha;

FK 5 465.9 ha) are the highest reported, to the best of

our knowledge. We examined the movements of adult

female turtles that were gravid in late spring; therefore, it

is important to consider the potential effect of long-

distance nesting forays. During the course of this study,

we observed very few (, 5) terrestrial movements

associated with nesting, all of which were located within

the individual’s existing home range.

Ross and Anderson (1990) suggested that the

relatively large home ranges of E. blandingii in Wisconsin

were the result of greater availability of suitable habitats.

Arvisais et al. (2002) described a general trend for larger

home ranges of G. insculpta at more northerly latitudes,

arguing that turtles must move farther to meet their

energetic requirements in habitats with lower productivity

and higher fragmentation. Brown et al. (1994) compared

the home ranges of C. serpentina inhabiting three habitats

of varying levels of productivity and found no significant

differences between sites. Habitat fragmentation may be

an important factor in determining turtle spatial ecology

in some cases (Edmonds 1998), but it cannot account for

all of the observed variation (Hamernick 2000).

The influence of habitat size on home-range size of

aquatic turtles has been considered previously. Plummer et

al. (1997) identified a number of factors that may influence

home-range size of turtles in lotic habitats and identified

stream width as an important variable. Linear regression

suggests a relationship between (log-transformed) avail-

able habitat size and (log-transformed) MCP home-range

size for both species (C. picta: r2 5 0.94, p , 0.01; T.
scripta: r2 5 0.70, p 5 0.08; Table 2; Fig. 4). Accurately

estimating the area of ‘‘available’’ habitat in lentic systems

can be difficult. For example, defining habitat availability

based on the distribution of individual relocations may

yield biased estimates. Nevertheless, local habitat charac-

teristics should be explicitly considered and reported in any

description of turtle spatial ecology.

The large home ranges observed in this study do not

appear to be the result of low resource availability. Although

we did not directly measure productivity, historical

descriptions of Reelfoot Lake’s aquatic habitats (Cagle

1937; Carr 1952), and the diversity and density of its

contemporary turtle community (Cobb 2008) suggest an

abundance of high-quality resources. The shallow basins and

flooded cypress forests surrounding Reelfoot Lake support a

diverse turtle community. Unlike Reelfoot Lake, most large

lakes have deep-water areas that lack suitable basking

locations (Florence 1975). As a result, the movements of

aquatic turtles are often restricted to the shorelines of large

lakes (Galois et al. 2002). This pattern was exhibited by C.
picta at Reelfoot Lake, but the larger T. scripta were able to

use virtually every portion of the lake. As such, we argue

that the extensive spatial ecologies of both species in this

study are largely influenced by the abundance of suitable

aquatic habitats found at Reelfoot Lake.

In conclusion, we demonstrate contrasting patterns of

space use for female painted turtles (C. picta) and red-

eared sliders (T. scripta) at Reelfoot Lake, Tennessee.

Examination of spatial data from the literature for both

species suggests a relationship between space use and the

physical attributes of the aquatic system, highlighting the

difficulty in describing a ‘‘typical’’ home-range size for

an aquatic turtle species. Future studies of turtle

movement and activity should consider the role of habitat

characteristics (e.g., size, shape, quality, human distur-

bance) on turtle behavior. A comparative approach could

clarify the relative roles of morphology, diet, and habitat

preferences in turtle spatial ecology.
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