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Abstract

We adapt a West Nile Virus (WNV) epidemic
model that demonstrates the interaction between
avian hosts and mosquito vectors into a more
comprehensive, early-season model by adding
intrinsic growth and death rates of hosts, as well as
horizontal transmission. We then parameterize this
model based on bird demographics in Rutherford
County, TN and investigate the effect of our
modifications on the basic reproduction number,
R0. The behavior of a single-host model and a
multi-compartment model which categorize the
bird groups by WNV mortality rates are compared.
It is seen that an epidemic will occur followed by
stabilization of host populations dependent on host
susceptibility to the virus.

Model Diagram

Figure 1: Vector classes include eggs (E), larvae (L), and adult
mosquitoes (V). All avian hosts (H) are adults in this model.
S, E, I, R, refer to susceptible, exposed, infected, and recovered
individuals, respectively. j ∈ {1, 2, 3} for bird categories with
0%, 1 − 49%, and > 50% WNV mortality.

Multi-Compartment Model
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Parameterization

Using eBird observation data, we find the 25 most
prevalent bird species in Rutherford County, TN.
Parameters are determined through a literature
search. For bird species with insufficient data, we
extrapolate from the closest relative or use the
average value of known species.

Parameter Variable
Λj Birth Rate
µj Death Rate
gj Recovery Rate

γHj WNV-Induced Death Rate
PHjM Host-to-Vector Transmission Host Group j
PHHj Horizontal Transmission

Basic Reproduction Number

The basic reproduction number, R0, represents the
mean number of secondary infections produced by
one infectious individual in a homogeneous
susceptible population. Here we calculate R0 via
the next-generation matrix method:
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and
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Condition R0

Late-Season Model 1.23
Single Compartment Model 1.61 (1.57)§

Host Group 1 2.14
Host Group 2 2.90
Host Group 3 3.53 (2.81)§

Multi-Compartment Model 4.87 (4.57)§

§: calculated without horizontal transmission

Multi-Compartment Results
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Figure 2: Multi-compartment model running for 150 days
starting from the disease-free equilibrium.

Single-Compartment Results
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Figure 3: Single-compartment model beginning at the disease-
free equilibrium and running for our 150-day season.

Conclusion

We first expanded upon a previous model of West
Nile Virus transmission to incorporate
location-specific bird demographics and direct
transmission. We then investigated the effects of
these new parameters upon the basic reproduction
number. Future research will implement optimal
control theory to control the vector population,
expand the model to include seasonality, and
investigate the effects of other environmental
parameters on the basic reproduction number.
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