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Abstract

We consider a malaria transmission model with SEIR
(susceptible-exposed-infected-recovered) classes for the human
population, SEI (susceptible-exposed-infected) classes for the
wild mosquitoes and an additional class for sterile mosquitoes.
We derive the basic reproduction number of infection. We for-
mulate an optimal control problem in which the goal is to min-
imize both the infected human populations and the cost to im-
plement two control strategies: the release of sterile mosquitoes
and the usage of insecticide-treated nets to reduce the malaria
transmission. Adjoint equations are derived and the charac-
terization of the optimal controls are established. Finally, we
quantity the effectiveness of the two interventions aimed at lim-
iting the spread of Malaria. A combination of both strategies
leads to a more rapid elimination of the wild mosquito pop-
ulation that can suppress Malaria transmission. Numerical
simulations are provided to illustrate the results.
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Figure 1:Malaria life cycle.
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Figure 2:Model Diagram.
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Table 1: Description of model parameters

Parameter Description

Ay, Immigrate rate of humans. Humans x Times™!.

(s Per capita birth rate of humans.

Wy Per capita birth rate of mosquitoes.

o Number of times one mosquito would bite humans per unit time.

o The maximum number of mosquito bites a human can have per unit time.

B Transmission probability from an infectious mosquito to a susceptible human if contact (bite) occurs.
Bun Transmission probability from an infectious human to a susceptible mosquito if contact (bite) occurs.
th Transmission probability from a recovered human to a susceptible mosquito if contact (bite) occurs.
En, & Per capita rate of progression of human/mosquitoes from the exposed state to the infectious state.
oy, Per capita disease-induced death rate for humans.

L1, o, Density-independent and density dependent death rate for humans,respectively.
[b1y, oy Density-independent and density dependent death rate for wild mosquitoes, respectively.
Hig, i2g  Density-independent and density dependent death rate for sterile mosquitoes, respectively.

Oh Per capita rate of loss of immunity for human.
Y Per capita recovery rate for humans from the infectious state to the recovered state.
b release rate of sterile mosquitoes

Our SEIR, SEI, and Sterile Mosquitoes model:
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Ry Calculation

Using the next generation matrix, we obtain the basic repro-
duction number
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To ensure there is a stable positive mosquito population, we
eive the conditions that guarantee the existence of this pos.
equil.

Define the threshold release rate of sterile mosquitoes:
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Theorem

Theorem 1: If b < by, there exists a disease-
free equilibrium in system (1). The disease-free
equilibrium of the state system is locally asymp-
totically stable when Ry < 1, and unstable when

Ry > 1.
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Optimal Control

the eflicacy of the bed net
the rate of releasing sterile

Two controls:  uy(t):
usage, and uo(t):

mosquitoes. Our goal is to determine an optimal
control pair (u}(t),u5(t)) that minimizes the objec-

tive functional:

T 1
J = /o wily + §(w2u% + wsus) dt.

The state system with two controls is given by
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Characterization of the optimal controls:
uy = min (max(O, m), M)
U, = min (maX(O, —bAs/ws), M)
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Numerical Simulations
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