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Abstract

We consider a malaria transmission model with SEIR
(susceptible-exposed-infected-recovered) classes for the human
population, SEI (susceptible-exposed-infected) classes for the
wild mosquitoes and an additional class for sterile mosquitoes.
We derive the basic reproduction number of infection. We for-
mulate an optimal control problem in which the goal is to min-
imize both the infected human populations and the cost to im-
plement two control strategies: the release of sterile mosquitoes
and the usage of insecticide-treated nets to reduce the malaria
transmission. Adjoint equations are derived and the charac-
terization of the optimal controls are established. Finally, we
quantify the effectiveness of the two interventions aimed at lim-
iting the spread of Malaria. A combination of both strategies
leads to a more rapid elimination of the wild mosquito pop-
ulation that can suppress Malaria transmission. Numerical
simulations are provided to illustrate the results.

Figure 1:Malaria life cycle.

Malaria Model

Figure 2:Model Diagram.

Table 1: Description of model parameters
Parameter Description
Λh Immigrate rate of humans. Humans × Times−1.
ψh Per capita birth rate of humans.
ψv Per capita birth rate of mosquitoes.
σv Number of times one mosquito would bite humans per unit time.
σh The maximum number of mosquito bites a human can have per unit time.
βhv Transmission probability from an infectious mosquito to a susceptible human if contact (bite) occurs.
βvh Transmission probability from an infectious human to a susceptible mosquito if contact (bite) occurs.
β̃vh Transmission probability from a recovered human to a susceptible mosquito if contact (bite) occurs.
ξh, ξv Per capita rate of progression of human/mosquitoes from the exposed state to the infectious state.
δh Per capita disease-induced death rate for humans.
µ1h, µ2h Density-independent and density dependent death rate for humans,respectively.
µ1v, µ2v Density-independent and density dependent death rate for wild mosquitoes, respectively.
µ1g, µ2g Density-independent and density dependent death rate for sterile mosquitoes, respectively.
ρh Per capita rate of loss of immunity for human.
γh Per capita recovery rate for humans from the infectious state to the recovered state.
b̂ release rate of sterile mosquitoes

Our SEIR, SEI, and Sterile Mosquitoes model:

S ′h = Λh + ψhNh + ρhRh − λh(t)Sh − fh(Nh)Sh
E ′h = λh(t)Sh − ξhEh − fh(Nh)Eh

I ′h = ξhEh − γhIh − fh(Nh)Ih − δhIh
R′h = γhIh − ρhRh − fh(Nh)Rh

S ′v = ψv
Nv

Nv + Sg
Nv − λv(t)Sv − fv(Nv + Sg)Sv

E ′v = λv(t)Sv − ξvEv − fv(Nv + Sg)Ev

I ′v = ξvEv − fv(Nv + Sg)Iv
S ′g = b̂− fg(Nv + Sg)Sg

(1)

R0 Calculation

Using the next generation matrix, we obtain the basic repro-
duction number

R0 =
√√√√ βhvξvσvσhSho
k1k2(σvSvo+σhSho)

(
βvhξvσvσhSvo

k3k4(σvSvo+σhSho) + β̃vhξvγhσvσhSvo
k3k4k5(σvSvo+σhSho)

)

To ensure there is a stable positive mosquito population, we
give the conditions that guarantee the existence of this pos.
equil.
Define the threshold release rate of sterile mosquitoes:

b0 := 1
2ψv

(
µ2vµ2gN̄

2
vg + (ψv − µ1v)µ1g

)
N̄vg, whereNvg = Sv+Sg.

Theorem

Theorem 1: If b < b0, there exists a disease-
free equilibrium in system (1). The disease-free
equilibrium of the state system is locally asymp-
totically stable when R0 < 1, and unstable when
R0 > 1.

Optimal Control

Two controls: u1(t): the efficacy of the bed net
usage, and u2(t): the rate of releasing sterile
mosquitoes. Our goal is to determine an optimal
control pair (u∗1(t), u∗2(t)) that minimizes the objec-
tive functional:

J =
∫ T

0
w1Ih + 1

2
(w2u

2
1 + w3u

2
2) dt.

The state system with two controls is given by
dSh
dt

= Λh + ψhNh + ρhRh − (1− u1(t))λh(t)Sh − fh(Nh)Sh,
dEh

dt
= (1− u1(t))λh(t)Sh − νhEh − fh(Nh)Eh,

dIh
dt

= νhEh − γhIh − fh(Nh)Ih − δhIh,
dRh

dt
= γhIh − ρhRh − fh(Nh)Rh,

dSv
dt

= ψvN
2
v

Nv + Sg
− (1− u1(t))λv(t)Sv − fv(Nv + Sg)Sv,

dEv

dt
= (1− u1(t))λv(t)Sv − νvEv − fv(Nv + Sg)Ev,

dIv
dt

= νvEv − fv(Nv + Sg)Iv,
dSg
dt

= bu2(t)− fg(Nv + Sg)Sg.
Characterization of the optimal controls:

u∗1 = min
(

max(0,m),M
)

u∗2 = min
(

max(0,−b̂λ8/w3),M
)

where

m =
(

(λ2−λ1)
βhvσhσvIvSh
σhNh + σvNv

+(λ6−λ5)
σhσv(βvhIh + β̃vhRh)

σhNh + σvNv

)
/w2.

Numerical Simulations

(a)Human Population w/o Control (b) Wild Mosquitoes Population
w/o Control

(c)Human Populations with 2 Con-
trols

(d)Mosquitoes Populations with 2
Controls

(e) Infected Human and Wild
Mosquitoes: No control

(f) Infected Human and Wild
Mosquitoes: with 2 optimal con-
trols

(g)Optimal Two Controls: (1) ITN (h)Optimal Two Controls: (2)
SIT

(i) Optimal Single Control: only
SIT

(j) Optimal Single Control:
only ITN
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