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We formulate an S–I–R (Susceptible, Infected, Immune) spatiotemporal epidemic model as
a system of coupled parabolic partial differential equations with no-flux boundary con-
ditions. Immunity is gained through vaccination with the vaccine distribution considered
a control variable. The objective is to characterize an optimal control, a vaccine program
which minimizes the number of infected individuals and the costs associated with vacci-
nation over a finite space and time domain. We prove existence of solutions to the state
system and existence of an optimal control, as well as derive corresponding sensitivity and
adjoint equations. Techniques of optimal control theory are then employed to obtain the
optimal control characterization in terms of state and adjoint functions. To illustrate so-
lutions, parameter values are chosen to model the spread of rabies in raccoons. Optimal
distributions of oral rabies vaccine baits for homogeneous and heterogeneous spatial do-
mains are compared. Numerical results reveal that natural land features affecting raccoon
movement and the relocation of raccoons by humans can considerably alter the design of a
cost-effective vaccination regime. We show that the use of optimal control theory in math-
ematical models can yield immediate insight as to when, where, and what degree control
measures should be implemented.

Published by Elsevier Inc.

1. Introduction

Diffusive partial differential equation (PDE) models are frequently used to study the continuous spatiotemporal spread
of disease among a population of susceptible (S), infected (I), and recovered or immune (R) individuals [1,2]. An underlying
assumption throughout PDE S–I–R models is that infected individuals transmit the disease only to susceptibles at their
current location. In 1981, Webb [3] analyzed a one-dimensional S–I–R model which included constant diffusive movement
of all individuals as well as no-flux boundary conditions. For classical solutions, Webb showed that as t → ∞, the function S
converges to a constant function while the function I converges to 0. Thus, the infection dies out as t → ∞, but not for
lack of susceptible individuals, some of whom never contract the disease. In 1987, Fitzgibbon and Morgan [4] extended this
model to bounded domains of arbitrary dimension and proved similar asymptotic results.

Our goal is to use optimal control techniques to characterize optimal spatial and temporal vaccine distributions which
slow the spread of an infection. Previous analysis of non-spatial S–I–R models has shown that vaccination applied above a
specific threshold value leads to successful elimination of the disease [5,6]. In this paper, we investigate vaccination effects
in a spatial-temporal epidemic model with reaction–diffusion PDEs that include transport effects and no-flux boundary
conditions, using a weak solution formulation [7]. In 2002, Bendahmane et al. [8] proved the existence of at least one
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weak solution for a non-linear reaction–diffusion PDE system with L1 data and no-flux boundary conditions. We formulate
an S–I–R model similar to that of Bendahmane et al. [8,9] with L∞ data and we include vaccination as a control variable.
Alternative control variables used in non-spatial S–I–R models include isolation, antiviral treatment, and increased sanitation
[10–12], and these features in space and time could be investigated using techniques illustrated in this paper. For our
problem formulation, an objective functional is constructed under the assumption that an optimal control minimizes the
infected population and costs associated with control while balancing the maximization of the susceptible population over
some finite space and time domain.

In Section 2, we present the model in a general framework and the associated optimal control problem. Principles
of optimal control theory are used in Section 3 to characterize the optimal strategy of vaccination. The existence and
uniqueness of the optimality system are stated informally and the proofs are outlined in Appendix A. As an illustrative
application, Section 4 provides numerical approximations of optimal spatiotemporal vaccination strategies with parameter
values chosen specifically for rabies and raccoons. Lastly, concluding remarks are provided in Section 5.

2. Model formulation and optimal control problem

Let S = S(x, t), I = I(x, t), and R = R(x, t) represent the density (or size) of the susceptible, infected, and immune classes
of a population at a given location x and time t . Let Ω be an open and bounded subset of Rn . Set Q = Ω × (0, T ) for some
fixed time T > 0. Given a control v(x, t) representing the density (or quantity, respectively) of vaccine at location x and
time t , the corresponding state variables (S, I, R) = (S, I, R)(v) satisfy the system

L1 S = b(x, t)(S + R) − μ1(x, t)S − β(x, t)S I − av(x, t)S,

L2 I = β(x, t)S I − μ2(x, t)I,

L3 R = −μ1(x, t)R + av(x, t)S (1)

for (x, t) ∈ Q and the operators Lk , k = 1,2,3, are defined as

Lku ≡ ∂u

∂t
−

n∑
i, j=1

(
ak

i j(x, t)uxi

)
x j

+
n∑

i=1

(
bk

i (x, t)u
)

xi
.

Initial conditions and no-flux boundary conditions are given by

S(x,0) = S0(x), I(x,0) = I0(x), R(x,0) = R0(x) for x ∈ Ω, (2)
∂ S

∂ν
= 0,

∂ I

∂ν
= 0,

∂ R

∂ν
= 0 on ∂Ω × (0, T ). (3)

Our formulation is such that only individuals in the S and R classes give birth. The parameter b is a birth rate, μ1 is
a natural death rate, and μ2 is an increased death rate due to disease. The horizontal incidence term β I S assumes the
infection rate of susceptibles is proportional to the number of infected and susceptible individuals at the current time with β

being the mass action coefficient. The rate at which susceptibles at location x at time t are effectively vaccinated depends
on the quantity of vaccine available, v(x, t), and the vaccine uptake parameter, a > 0. The boundary conditions imply that
the population does not diffuse across the boundary. The conormal outward vector, ν , has components νi = ∑n

j=1 aijη j with
the outward normal vector on ∂Ω denoted by η.

The following are assumed to hold:

1. S0(x), I0(x), R0(x) ∈ L∞(Ω) and S0(x) > 0, I0(x) > 0, R0(x) � 0,
2. b,μ1,μ2, β ∈ L∞(Q ) and b � 0, μ1 � 0, μ2 � 0, β � 0,
3. ak

i j,bk
i ∈ C1(Q̄ ) and ak

i j = ak
ji for k = 1,2,3,

4.
∑n

i, j=1 ak
i jξiξ j � θ

∑n
i=1 ξ2

i , k = 1,2,3, where θ > 0.

Define the space Z = L2(0, T ; H1(Ω)) and the bilinear form

Bk[t, u, φ] =
∫
Ω

n∑
i, j=1

ak
i j(x, t)uxi φx j dx dt +

∫
Ω

n∑
i=1

(
bk

i (x, t)u
)

xi
φ dx dt

for u, φ ∈ Z and k = 1,2,3.

Definition. For the system (1)–(3), a weak solution (S, I, R) ∈ Z 3 with St , It , Rt ∈ L2(0, T ; H1(Ω)∗) must be non-negative
and satisfy (2), (3) and the variational formulation of (1) given by
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T∫
0

〈St, φ1〉dt +
T∫

0

B1[t, S, φ1]dt =
∫
Q

b(S + R)φ1 dx dt −
∫
Q

β S Iφ1 dx dt −
∫
Q

(μ1 − av)Sφ1 dx dt,

T∫
0

〈It, φ2〉dt +
T∫

0

B2[t, I, φ2]dt =
∫
Q

β S Iφ2 dx dt −
∫
Q

μ2 Iφ2 dx dt,

T∫
0

〈Rt, φ3〉dt +
T∫

0

B3[t, R, φ3]dt =
∫
Q

av Sφ3 dx dt −
∫
Q

μ1 Rφ3 dx dt (4)

for all φ1, φ2, φ3 ∈ Z where 〈 , 〉 inner product is the duality between H1(Ω)∗ and H1(Ω).

Admissible controls are contained in the set

V = {
v ∈ L∞(Q ) | v : Q → [0, vmax]

}
for some positive constant vmax. The best strategy for controlling an epidemic outbreak during a time period of length T
can be one which minimizes the number of individuals who become infected and the cost of vaccination during the time
period. It can also be important to sustain a sizable susceptible population. Therefore, we seek to minimize the objective
functional

J (v) =
∫
Q

(
AI − B S + Φ(v)

)
dx dt

where A, B are constant weights and Φ(·) is a lower semi-continuous convex function representing the cost of vaccination.
Costs can be expressed in various forms within the objective functional and the function choice may impact the optimal
control [16].

Theorem A.1 states that for T sufficiently small, if given a control v ∈ V , then there exists a unique weak solution
(S, I, R)(v). In the existence proof, we use the Banach fixed point theorem on space X3 where

X = C
([0, T ]; L2(Ω)

) ∩ {
u ∈ L∞(Q ) | 0 � u � M a.e. (x, t) ∈ Q

}
(5)

for fixed M . This space choice provides biologically justified L∞(Q ) bounds on S , I , and R .

3. Optimal control characterization

For detailed background and methodology of optimal control theory for systems of PDEs, see books by Lions [13], Li
and Yong [14], and Lenhart and Workman [15]. In Theorem A.2, the existence of an optimal control is obtained through a
minimizing sequence argument and continuous dependence of the states on the control. To obtain the necessary conditions
for the optimal control, the objective functional J is differentiated with respect to the control v . Specifically, for v , h ∈ V ,
we take the Gateaux derivative of J with respect to v in the direction h,

lim
ε→0

J (v + εh) − J (v)

ε
.

Because the objective functional contains the state variables, we also differentiate the map from the control to the states. In
Theorem A.3, we show that the control-to-states mapping, v ∈ V → (S, I, R) ∈ Z 3, is differentiable in the sense that there
exist Ψ1,Ψ2,Ψ3 ∈ Z such that

S(v + εh) − S(v)

ε
⇀ Ψ1,

I(v + εh) − I(v)

ε
⇀ Ψ2,

R(v + εh) − R(v)

ε
⇀ Ψ3

in Z as ε → 0 for any v ∈ V and h ∈ L∞(Q ) such that v + εh ∈ V for ε small. These derivatives, called sensitivities, solve a
linearized version of the state equations given by

L1Ψ1 − b(Ψ1 + Ψ3) + μ1Ψ1 + βΨ1 I + βΨ2 S + avΨ1 = −ahS,

L2Ψ2 − βΨ1 I − βΨ2 S + μ2Ψ2 = 0,

L3Ψ3 + μ1Ψ3 − avΨ1 = ahS (6)

for (x, t) ∈ Q . For conciseness, the above system can be written as L(Ψ1,Ψ2,Ψ3)
τ = (−ahS,0,ahS)τ where L is the appro-

priate operator and τ denotes the transpose. The initial conditions satisfied by the sensitivities are

Ψ1(x,0) = Ψ2(x,0) = Ψ3(x,0) = 0 for x ∈ Ω (7)
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and corresponding boundary conditions are

∂Ψ1

∂ν
= ∂Ψ2

∂ν
= ∂Ψ3

∂ν
= 0 on ∂Ω × (0, T ). (8)

We introduce L∗ , the adjoint of the operator of the linearized equations. Theorem A.4 proves the existence of the
adjoint variables (p1, p2, p3) satisfying L∗(p1, p2, p3)

τ = (−B, A,0)τ . Here, the right-hand side of the adjoint system is the
derivative of the integrand in the objective functional with respect to each state variable. Suppose v∗ is an optimal control
and (S∗, I∗, R∗) = (S, I, R)(v∗) are the corresponding state variables. The adjoint system becomes

L∗
1 p1 − bp1 + μ1 p1 + β I∗p1 + av∗p1 − β I∗ p2 − av∗p3 = −B,

L∗
2 p2 + β S∗p1 − β S∗p2 + μ2 p2 = A,

L∗
3 p3 − bp1 + μ1 p3 = 0 (9)

where L∗
k , k = 1,2,3, are defined as

L∗
k pk = −∂ pk

∂t
−

n∑
i, j=1

(
ak

i j(x, t)(pk)xi

)
x j

−
n∑

i=1

bk
i (x, t)(pk)xi .

Conditions at the final time T for the adjoint variables are given by

p1(x, T ) = 0, p2(x, T ) = 0, p3(x, T ) = 0 for x ∈ Ω (10)

and the appropriate boundary conditions are

∂ p1

∂ν
+

(
n∑

i=1

b1
i · ηi

)
p1 = 0,

∂ p2

∂ν
+

(
n∑

i=1

b2
i · ηi

)
p2 = 0,

∂ p3

∂ν
+

(
n∑

i=1

b3
i · ηi

)
p3 = 0 on ∂Ω × (0, T ). (11)

Through standard optimality techniques, analyzing the objective functional and utilizing relationships between the state
and adjoint equations, a characterization of the control is formulated. The following theorem characterizes the optimal
control for the case in which the costs associated with implementing the control are given by Φ(v) = cv2 for some c > 0.
Optimal control characterizations for other cost functionals can be derived with similar techniques.

Theorem 1. Suppose J (v) = ∫
Q (AI − B S + cv2)dx dt for some c > 0. Given an optimal control v∗ ∈ V and corresponding states

(S∗, I∗, R∗) = (S, I, R)(v∗), the optimal control is characterized by

v∗ = min

((
(p1 − p3)aS∗

2c

)+
, vmax

)
. (12)

Proof. Suppose v∗ is an optimal control and (S∗, I∗, R∗) = (S, I, R)(v∗) are the corresponding state variables. Consider
vε ≡ v∗ +εh ∈ V and corresponding state solution (Sε, Iε, Rε) = (S, I, R)(vε). Since the minimum of the objective functional
is attained at v∗ , we have

0 � lim
ε→0+

J (vε) − J (v∗)
ε

= lim
ε→0+

∫
Q

(
A

(
Iε − I∗

ε

)
− B

(
Sε − S∗

ε

)
+ c(vε)2 − c(v∗)2

ε

)
dx dt

= lim
ε→0+

∫
Q

(
A

(
Iε − I∗

ε

)
− B

(
Sε − S∗

ε

)
+ c

(
vε − v∗

ε

)(
vε + v∗))dx dt

=
∫ (

AΨ2 − BΨ1 + 2chv∗)dx dt
Q
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=
∫
Q

(
(Ψ1,Ψ2,Ψ3)(−B, A,0)τ + 2chv∗)dx dt

=
∫
Q

(
(Ψ1,Ψ2,Ψ3)L∗(p1, p2, p3)

τ + 2chv∗)dx dt.

In the appropriate weak sense, the above inequality and equalities imply

0 �
∫
Q

(
(p1, p2, p3)L(Ψ1,Ψ2,Ψ3)

τ + 2chv∗)dx dt

=
∫
Q

(
(p1, p2, p3)

(−ahS∗,0,ahS∗)τ + 2chv∗)dx dt

=
∫
Q

(−hp1aS∗ + hp3aS∗ + 2chv∗)dx dt

=
∫
Q

h
(
2cv∗ − ap1 S∗ + ap3 S∗)dx dt.

By standard arguments varying h, we obtain

v∗ = min

((
(p1 − p3)aS∗

2c

)+
, vmax

)
. �

The optimality system consists of the state system (1)–(3), the adjoint system (9)–(11), and the characterization of the
control (12). In Theorem A.5, the solution to the optimality system is shown to be unique for T sufficiently small in the
case where Φ(v) = cv2 for some c > 0, which implies the corresponding uniqueness of the optimal control.

4. Application to rabies and raccoons

4.1. Application to rabies and raccoons

In 1986, Murray et al. used partial differential equations to study the spatial spread of rabies in the fox populations of
Europe [17,18]. Since then, the spread of rabies in foxes and other wildlife has been extensively studied with various spatial
models [19–23], but the application of control or optimal control within these models is limited. Using the model from
[18], Evans and Pritchard [24] applied control of initial conditions in culling and quarantine to drive the fox population to a
desired profile. Currently, many areas in the eastern US and Canada strategically distribute oral rabies vaccine baits by hand
and by aircraft in an effort to mitigate the spread of rabies among raccoons [25,26]. After eating a bait, a healthy raccoon
will develop antibodies in two to three weeks that will provide protection if the raccoon is exposed to an infected raccoon.
Asano et al. [27] use optimal control theory to characterize optimal vaccination levels for a raccoon metapopulation model
with continuous time and discrete space. Additionally, Ding et al. [28] investigate similar results for discrete space and time.

In this section, we extend this survey of optimal raccoon vaccination regimes to a continuous time and space domain
and explore the influence of realistic heterogeneous spatial domains on vaccine distribution. Landscape features, such as
rivers and heavy forest cover, and long-distance translocation (LDT) of raccoons are known to perpetuate irregular dynamics
in the rabies wave front. We compare optimal strategies of vaccine bait placement on a homogeneous spatial domain with
those on a heterogeneous domain incorporating a river, forest cover, and LDT.

For this application, let Ω ⊂ R2 represent a rectangular grid of size 30 km × 20 km. We simplify our original model to
include only diffusive movement in the x and y directions. Given a control v = v(x, y, t) representing the density of vaccine
baits at location (x, y) ∈ Ω on week t , the corresponding susceptible (S = S(x, y, t)), infected (I = I(x, y, t)), and immune
(R = R(x, y, t)) raccoon population densities satisfy

∂ S

∂t
= a11(x, y)Sxx + a22(x, y)S yy + b(t)(S + R) − μ1 S − β S I − av S, (13)

∂ I

∂t
= a11(x, y)Ixx + a22(x, y)I yy + β S I − μ2 I, (14)

∂ R

∂t
= a11(x, y)Rxx + a22(x, y)R yy − μ1 R + av S (15)

for all (x, y, t) ∈ Ω × [0, T ]. Initial conditions are specified by

S(x, y,0) = S0(x, y), I(x, y,0) = I0(x, y), R(x, y,0) = R0(x, y) (16)
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for (x, y) ∈ Ω and no-flux boundary conditions are given by

∂ S

∂x
= 0,

∂ I

∂x
= 0,

∂ R

∂x
= 0 on

({x = 0} ∪ {x = 30}) × (0, T ), (17)

∂ S

∂ y
= 0,

∂ I

∂ y
= 0,

∂ R

∂ y
= 0 on

({y = 0} ∪ {y = 20}) × (0, T ). (18)

Several rabies models include additional classes to track the exposed (infectious but not infected) raccoons as well as the
quantity of baits on the ground [23,28,29]. For simplicity, we classify a raccoon to be susceptible if not previously exposed to
rabies, infected if able to transmit rabies, or immune if vaccinated. Data and model predictions indicate low levels of natural
immunity (1–5%) within raccoon populations, suggesting that raccoons develop little or no natural immunity to rabies [30].
Thus, we ignore natural immunity in our model and assume all rabies immunity is gained through vaccination.

Raccoons give birth during the spring of each year, March 20–June 21, an approximate 14 week period. See Clayton et al.
[29] for the effect of the raccoon birth pulse in an ODE rabies model. Assuming a 50/50 sex rate within the population
and that half the population are mature females, a reproductive rate of 1.34 year−1 is estimated [23,29]. Dividing this
yearly rate by the 14 week period, we find b(t) = 0.096 week−1 for t within the birthing period. When t is not within
the birthing period, we let b(t) = 0. For the simulations, we assume the birthing period to be weeks 13 through 27. The
constant year-long natural death rate, μ1 = 0.026 week−1, is calculated so that in absence of any disease or spatial spread,
the susceptible population at t = 0 weeks and t = 52 weeks are approximately equal [29]. Rabies-related death rate is
estimated to be μ2 = 0.490 week−1 [23,29]. The rate of infection β I is taken to be 0.03I [20,21,29]. The vaccine uptake
rate a, a parameter with units (vaccine · week)−1, is an indication of how successful the grounded baits are in vaccinating a
raccoon. That is, to successfully vaccinate a raccoon, a bait must be first found and then eaten by a susceptible raccoon. This
process can be inhibited by deterioration of the bait, human removal of the bait, or consumption of the bait by an animal
other than a susceptible raccoon. Determining the value of a is not straightforward. We present results here for a = 0.01
(vaccine · week)−1 and discuss how the parameter value influences the optimal control.

Infection starting in one corner of our domain can spread, possibly irregularly, to the opposite corner within a 52-week
period. Irregularity in the rabies wave front can be attributed to the presence of rivers and forested land. Using a network
model based on the adjacency of Connecticut townships, Smith, Waller, Russell, Childs, and Real [22] found that forestation
slows the spread of rabies by nearly three times and that rivers reduce the local transmission by five-fold. In the model
which best fit the Connecticut data, rabies did not cross rivers separating heavily forested townships. It is also known that
the long distance translocation (LDT) of an infected raccoon can give rise to irregularity in the rabies wavefront. Smith
et al. identified two putative LDT events which were shown to have effects on the spread of rabies within neighboring
Connecticut townships. Our goal in this application is to identify how the optimal vaccination changes given the presence
of spatial barriers and the relocation of an infected raccoon ahead of the rabies wavefront.

In the following subsection, we numerically approximate optimal vaccination strategies for (1) a homogeneous spatial
domain with constant diffusion coefficients and a uniform initial susceptible population and (2) a heterogeneous spatial
domain with spatially dependent diffusion coefficients and a heterogeneous initial susceptible population. In heterogeneous
case, movement within the forested area and across the river is inhibited and the initial susceptible population is assumed
to be the largest in non-forested (urban) areas and absent on the river [31]. See Table 1 for a list of all parameter values
used in the homogeneous and heterogeneous examples. The boundary conditions imply that raccoons neither enter nor exit
our domain.

The set of admissible controls, denoted by V , will consist of all measurable functions satisfying 0 � v(x, y, t) � vmax a.e.
(x, y, t) ∈ Ω × [0, T ]. Here, vmax is a large positive constant representing an upper bound on the density of baits placed at
each location. For this application, we state the optimal control problem as follows. Find v∗(x, y, t) ∈ V which minimizes
the objective functional∫

Ω×[0,T ]

(
I(x, y, t) + cv2(x, y, t)

)
dx dy dt

subject to system (13)–(18). Above, T is the number of weeks over which we apply control and observe population dy-
namics. Note that we have simplified the original formulation of the objective functional so that B = 0 and, without loss of
generality, A = 1. The cost of vaccination is expected to be a non-linear function of v . Here, we choose a quadratic function

indicating additional costs associated with high levels of vaccination. The parameter c, with units raccoon/km2

vaccine2 , balances the
squared cost of vaccine with the cost associated with the infected population. An optimal control will be one which mini-
mizes a combination of the cost of vaccination and the infectious population over the spatial domain Ω and a time period
of length T weeks.

4.2. Numerical results

An iterative numerical scheme is employed to approximate solutions to the optimality system, which contains initial
conditions for the state variables and final time conditions for the adjoints variables. The iterative process begins with
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Table 1
Parameters values.

Description (units) Notation Homogeneous Heterogeneous

Spatial domain Ω 30 km × 20 km a

Spatial subdomain ΩI 3 km × 2 km a

Initial susceptible population
raccoons/km2

S0(x, y) 30 for (x, y) ∈ Ω 0 for (x, y) on river

10 for (x, y) in forest

30 for (x, y) elsewhere
Initial infected population

raccoons/km2
I0(x, y) 2 for (x, y) ∈ ΩI

a

0 for (x, y) elsewhere

Initial immune population
raccoons/km2

R0(x, y) 0 for (x, y) ∈ Ω a

Diffusion coefficient
km2/week

a11(x, y) 0.50 for (x, y) ∈ Ω 0.01 (x, y) in river

0.20 for (x, y) in forest

0.50 for (x, y) elsewhere
Diffusion coefficient

km2/week
a22(x, y) 0.50 for (x, y) ∈ Ω 0.20 for (x, y) in forest

0.50 for (x, y) elsewhere
Birth rate

week−1
b(t) 0.096 for 13 � t < 28 a

0 otherwise

Natural death rate
week−1

μ1 0.026 a

Death rate of infected
week−1

μ2 0.490 a

Transmission rate
1

raccoon/km2 ·week

β 0.03 a

Vaccine uptake rate
1

raccoon/km2 ·week

a 0.01 a

Balancing coefficient
(raccoon/km)2/vaccine2

c 0.10 a

Vaccine time period
(weeks)

T 20 a

a Same as homogeneous value.

an initial guess for the control variable. Using an explicit finite difference method, we approximate solutions to the state
equations given the initial conditions and the control variable. Using the state solutions and the control variable, a finite
difference method is again used to solve the adjoint equations with final time conditions. Lastly, we update the control
value with the current state and adjoint solutions. This process is repeated until successive values of the control variable,
the states variables, and the adjoint variables are sufficiently close.

The infection is assumed to originate in the subdomain ΩI at week t = 0 as reflected by the initial conditions in Table 1.
For the homogeneous and heterogeneous spatial domains, respectively, Figs. 1 and 2 display the spread of infection over a
period of 52 weeks in the absence of vaccination. For the homogeneous spatial domain, the constant diffusion coefficients, in
combination with the homogeneous initial susceptible population, yield a uniform wavefront, propagating from one corner
of the spatial grid to the opposite corner within the 52-week time period. For the heterogeneous spatial domain, infection
spreads irregularly due to the varying diffusion coefficients and heterogeneous initial susceptible population. Rabies spreads
predominantly up and around the river and does not appear to greatly impact the heavily forested area within the domain.

In our numerical tests, we first consider the optimal vaccination starting at week t = 0, the time at which rabies is
first detected within our domain. Although the results for this case are not displayed, the optimal distribution of vaccine
is identical in both spatial domains. For both the homogeneous and the heterogeneous domain, the optimal strategy is one
which immediately vaccinates the site of infection and allocates a reduced amount of vaccine in adjacent areas. The density
of baits is highest at time t = 0 and declines to zero within a few weeks. The optimal control successfully contains rabies to
the bottom, left-hand corner of the domain. Specifically, the density of the infected class after 20 weeks is reduced below
1 raccoon/km2 on Ω , a threshold criteria that we will hereon use as a sign of successful rabies elimination.

For a more realistic scenario, we assume that the initial infection spreads for twenty-one weeks without intervention.
Given the progression of the infection on week t = 21 (Figs. 1 and 2), we compute the optimal 20-week vaccination starting
on week t = 21. Figs. 3 and 4 display the results for the homogeneous and heterogeneous domains, respectively. Both
schemes show control being applied at heaviest amounts initially and continuing with tapering amounts. Although, we
allow control to be applied for twenty weeks (T = 20), the simulations suggests very little or no vaccine is needed after ten
weeks. Both vaccine strategies successfully eliminate rabies in the domain by week t = 41.

For the homogeneous case, the strategy is to immediately place an arc of vaccine bait in front of the infectious wave.
The arc extends from the top to the bottom of the domain and it’s exact placement is determined by the vaccine uptake
parameter, a. In Fig. 3, we assume a = 0.01 and the arc is placed well in advance of the infectious wave. This placement
allots ample time for susceptible raccoons to eat the baits and become immune. This immunity is sufficient to prevent
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Fig. 1. In the absence of vaccination, infection starting in ΩI spreads as an expanding wave throughout the homogeneous spatial domain.

Fig. 2. In the absence of vaccination, infection starting in ΩI spreads irregularly throughout the heterogeneous spatial domain.

rabies from spreading past the vaccine barrier. In additional simulations, we found that by increasing the value of a, the
optimal vaccine distribution remains in the shape of an arc but is placed closer to the infectious wave.

In the corresponding heterogeneous case, we find that the optimal vaccination is considerably curtailed, only forming a
partial arc in front of the infectious wave and allowing the natural barriers to act in place of vaccination. Initially, the edges
of forested areas and areas containing the river are fortified with a relatively small quantity of vaccine. With the partial
vaccine arc and natural land features acting as a cordon sanitaire, the resulting population dynamics indicate that rabies
does not cross to the right side of the river.

Lastly, we assess the influence of long distance translocation (LDT) on the optimal vaccination on a heterogeneous do-
main. We again assume that the infection originating in ΩI at t = 0 weeks progresses without intervention until t = 21
weeks as in Fig. 2. At t = 21 weeks, one additional infected raccoon appears in the upper right-hand corner of Ω . Even
though the LDT is minor in comparison to the existing infection, it is an immediate concern. The optimal strategy starting
at t = 21 weeks, seen in Fig. 5, immediately applies the largest concentration of vaccine on the site of the LDT. For our
objective functional and cost coefficients, it is cost-effective to prevent the new focus from becoming a widespread epi-
demic while also vaccinating near the existing infectious wave. Even with the intense local vaccination, the LDT event does
produce several secondary infections. However, with the two-part vaccination regime, the infectious wave produced by the
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Fig. 3. For the homogeneous spatial domain, the optimal vaccination starting at week 21 is shown at weeks 21, 24 and 29.

Fig. 4. For the heterogeneous spatial domain, the optimal vaccination starting at week 21 is shown at weeks 21, 25 and 29.

Fig. 5. For the heterogeneous spatial domain with LDT, the optimal vaccination starting at week 21 is shown at weeks 21, 25 and 29.

LDT is limited. Further, the existing outbreak is mitigated by the barrier created by the vaccine in combination with the
river and forest cover. By t = 41 weeks, successful elimination of the infected class is achieved while maintaining a viable
susceptible and immune population.

In Fig. 5, we assume the balancing coefficient to be c = 0.10. When a higher cost is associated with vaccination the
optimal allocation of vaccine bait will decrease in quantity. In a numerical example with c = 0.25, we found that the
increased cost of vaccination significantly constrains the optimal amount of vaccine used. Interestingly, the spatial pattern
of distribution remains similar to that in Fig. 5. That is, the optimal distribution places vaccine in front of the existing wave
front (curtailed by the forest cover and river) while also placing vaccine atop the LDT. With the reduced quantity of vaccine,
the optimal strategy for c = 0.25 does not contain disease spread and is unsuccessful in eliminating the infected population
over a 20-week period. These results suggest that there exists a threshold level of population immunity necessary to contain
rabies spread [31].

5. Conclusions

In this article, we present a novel application of optimal control theory to spatiotemporal epidemic models described by
a system of partial differential equations. The control variable is the spatial and temporal distribution of vaccine. We prove
the existence and uniqueness of the solutions to our parabolic state system as well as prove the existence of an optimal
control, sensitivity system, and adjoint system. For a given objective functional, an optimal control is characterized in terms
of the corresponding state and adjoint variables. Lastly, uniqueness of the optimality system is shown for sufficiently small
time.
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As an illustrative application, we solve the optimality system numerically with parameters chosen to model the spread
of rabies within a raccoon population. Although partial differential equations have previously been used to model rabies
spread among raccoons, optimal control theory was not applied to these models. Our results reveal that the optimal timing
and placement of rabies vaccine baits can vary with the spatial structure of a domain. Natural land features which deter
raccoon movement (such as a river or forest cover) act as a barrier against the spread of rabies. In our simulations, these
barriers aid the optimal vaccination strategies considerably. During the course of an outbreak, long distance translocation
of raccoons has been known to occur. Our optimal vaccination strategies suggest that a new epidemic focus resulting from
translocation should be addressed immediately and with ample vaccine.

All of the optimal vaccination regimes displayed are considered successful control regimes. For the time period in which
optimal control was applied, the spread of rabies was contained to a fraction of our domain and the infected class reached
below a specified threshold value (I(x, y, T ) < 1 for all (x, y) ∈ Ω). However, for scenarios in which increased costs are
associated with control implementation, optimal control schemes are not always successful. An optimal control scheme
with a decreased quantity of baits may hinder the rate at which disease spreads, but not contain the spread entirely. Thus,
policy makers should consider optimal control theory and mathematical models not only as tools for design control schemes
but also as methods for predetermining the scheme’s consequences and possible success.

Our work provides a new and useful tool in addressing the control of disease spreading continuously in both space and
time. Our model assumes the movement of individuals can be explained by diffusive and/or advective terms. Further, we
assume the traditional mass action disease incidence term applies. Small modifications to these assumptions can easily be
handled but would alter an optimal control. Discrete and distributed time delays may be considered in the incidence term,
but these modifications would require some different estimates and control analysis [5,32]. The control of alternative disease
dynamics, such as vector-host relationships which may be represented by parabolic PDE systems, can be studied with the
techniques outlined here.
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Appendix A

Theorem A.1. For T sufficiently small, given v(x, t) ∈ V , there exists a unique non-negative solution (S, I, R) ∈ Z 3 satisfying (2), (3),
and (4). Furthermore, S, I , and R are bounded uniformly in L∞(Q ).

Proof. To obtain L∞(Q ) bounds on S , I , and R , we apply Banach’s fixed point theorem in the space X3 where X is defined
in (5) and has the norm ‖u1, u2, u3‖X3 = (‖u1‖X + ‖u2‖X + ‖u3‖X ) where ‖u‖X = sup0�t�T ‖u(t)‖L2(Ω) .

Assume v ∈ V . For some λ > 0 to be chosen later, we let w = e−λt S , y = e−λt I , and z = e−λt R . The transformed state
variables satisfy

L̂1 w = b(w + z) − μ1 w − eλtβwy − av w,

L̂2 y = eλtβwy − μ2 y,

L̂3z = −μ1z + av w a.e. (x, t) ∈ Q , (19)

w(x,0) = S0(x), y(x,0) = I0(x), z(x,0) = R0(x) for x ∈ Ω, (20)

and

∂ w

∂ν
(x, t) = 0,

∂ y

∂ν
(x, t) = 0,

∂z

∂ν
(x, t) = 0 for all x ∈ ∂Ω, t ∈ (0, T ) (21)

where

L̂ku ≡ ∂u

∂t
−

n∑
i, j=1

(
ak

i juxi

)
x j

+
n∑

i=1

bk
i uxi +

(
n∑

i=1

(
bk

i

)
xi

+ λ

)
u for k = 1,2,3.

Given (h1,h2,h3) ∈ X3, the system of linear parabolic PDEs described by

L̂1 w = b(w + h3) − μ1 w − eλtβwh2 − av w,

L̂2 y = eλtβh1 y − μ2 y,

L̂3z = −μ1z + avh1 a.e. (x, t) ∈ Q , (22)

along with (20) and (21), has a unique weak solution (w, y, z) ∈ Z 3 and, furthermore, w, y, z ∈ C([0, T ]; L2(Ω)) [7]. To
ensure (w, y, z) ∈ X3, we now show that 0 � w(x, t), y(x, t), z(x, t) � M a.e. (x, t) ∈ Q for some M � 0.
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By first choosing λ sufficiently large and then choosing T sufficiently small, the extension of the Parabolic Maximum
Principle to weak solutions [33] gives us 0 � w a.e. (x, t) ∈ Q . Using the function w(x, t)−W t for some positive constant W ,
we may conclude w(x, t) � ‖S0(x)‖L∞(Ω) + W t a.e. (x, t) ∈ Q . For T � M

2W , we have

w(x, t) �
∥∥S0(x)

∥∥
L∞(Ω)

+ M

2
� M a.e. (x, t) ∈ Q .

Similarly, y(x, t) � M and z(x, t) � M a.e. (x, t) ∈ Q . Thus, we have shown that for (h1,h2,h3) ∈ X3, there exists a unique
solution (w, y, z) ∈ Z 3 ∩ X3 to system (20)–(22).

Now we show that the map A : X3 → X3 such that A(h1,h2,h3) = (w, y, z) is a strict contraction. Choose (h1,h2,h3),

(h̄1, h̄2, h̄3) ∈ X3. Define (w, y, z) = A(h1,h2,h3) and (w̄, ȳ, z̄) = A(h̄1, h̄2, h̄3). Multiply the PDEs satisfied by differences
(w − w̄), (y − ȳ), and (z − z̄) by test functions (w − w̄), (y − ȳ), and (z − z̄), respectively, and integrate over the domain
Q s = Ω × (0, s) for arbitrary s ∈ (0, T ) to obtain∫

Q s

(w − w̄)t(w − w̄)dx dt + λ

∫
Q s

(w − w̄)2 dx dt

+
∫
Q s

n∑
i, j=1

a1
i j(w − w̄)xi (w − w̄)x j dx dt +

∫
Q s

n∑
i=1

(
b1

i (w − w̄)
)

xi
(w − w̄)dx dt

=
∫
Q s

b(w − w̄)2 dx dt +
∫
Q s

b(h3 − h̄3)(w − w̄)dx dt −
∫
Q s

μ1(w − w̄)2 dx dt

−
∫
Q s

eλtβ(wh2 − w̄h̄2)(w − w̄)dx dt −
∫
Q s

av(w − w̄)2 dx dt,

∫
Q s

(y − ȳ)t(y − ȳ)dx dt + λ

∫
Q s

(y − ȳ)2 dx dt

+
∫
Q s

n∑
i, j=1

a2
i j(y − ȳ)xi (y − ȳ)x j dx dt +

∫
Q s

n∑
i=1

(
b2

i (y − ȳ)
)

xi
(y − ȳ)dx dt

=
∫
Q s

eλtβ(h1 y − h̄1 ȳ)(y − ȳ)dx dt −
∫
Q s

μ2(y − ȳ)2 dx dt,

∫
Q s

(z − z̄)t(z − z̄)dx dt + λ

∫
Q s

(z − z̄)2 dx dt

+
∫
Q s

n∑
i, j=1

a3
i j(z − z̄)xi (z − z̄)x j dx dt +

∫
Q s

n∑
i=1

(
b3

i (z − z̄)
)

xi
(z − z̄)dx dt

=
∫
Q s

μ1(z − z̄)2 dx dt +
∫
Q s

av(h1 − h̄1)(z − z̄)dx dt.

Utilizing the ellipticity condition (#4 in list of assumptions), we estimate several terms on the left-hand side of the above
equations. Summing the inequalities, we obtain

1

2

∫
Ω

(
(w − w̄)2 + (y − ȳ)2 + (z − z̄)2)(x, s)dx

+ λ

∫
Q s

(
(w − w̄)2 + (y − ȳ)2 + (z − z̄)2)dx dt

+ θ

2

∫
Q s

(∣∣∇(w − w̄)
∣∣2 + ∣∣∇(y − ȳ)

∣∣2 + ∣∣∇(z − z̄)
∣∣2)

dx dt

� C0

∫ (
(w − w̄)2 + (y − ȳ)2 + (z − z̄)2)dx dt +

∫
b(h3 − h̄3)(w − w̄)dx dt
Q s Q s



614 R. Miller Neilan, S. Lenhart / J. Math. Anal. Appl. 378 (2011) 603–619
+
∫
Q s

eλtβ(wh2 − w̄h̄2)(w − w̄)dx dt +
∫
Q s

eλtβ(h1 y − h̄1 ȳ)(y − ȳ)dx dt

+
∫
Q s

av(h1 − h̄1)(z − z̄)dx dt (23)

where C0 is a constant depending on θ and the bounds assumed on the model parameters, coefficients bk
i and (bk

i )xi , and
the control v .

Next we estimate terms on the right-hand side of the above inequality. For example, we estimate∫
Q s

eλtβ(h1 y − h̄1 ȳ)(y − ȳ)dx dt

=
∫
Q s

eλtβ
(

y(h1 − h̄1) + h̄1(y − ȳ)
)
(y − ȳ)dx dt

=
∫
Q s

eλtβ y(h1 − h̄1)(y − ȳ)dx dt +
∫
Q s

eλtβh̄1(y − ȳ)2 dx dt

� 1

2

∫
Q s

e2λt y2β2(y − ȳ)2 dx dt + 1

2

∫
Q s

(h1 − h̄1)
2 dx dt +

∫
Q s

eλtβh̄1(y − ȳ)2 dx dt

� D1
(
M + M2)e2λT

∫
Q s

(y − ȳ)2 dx dt + 1

2

∫
Q s

(h1 − h̄1)
2 dx dt

where D1 is a positive constant that depends only on the L∞(Q ) bounds on β .
By estimating the remaining terms in the right-hand side of (23) in a similar manner and noting the L∞(Q ) bounds the

variables w̄, ȳ, z̄,h1,h2,h3, we get

1

2

∫
Ω

(
(w − w̄)2(x, s) + (y − ȳ)2(x, s) + (z − z̄)2(x, s)

)
dx

+ (
λ − C1 − C2

(
M + M2)e2λT )∫

Q s

(
(w − w̄)2 + (y − ȳ)2 + (z − z̄)2)dx dt

+ θ

2

∫
Q s

(∣∣∇(w − w̄)
∣∣2 + ∣∣∇(y − ȳ)

∣∣2 + ∣∣∇(z − z̄)
∣∣2)

dx dt

�
∫
Q s

(
(h1 − h̄1)

2 + (h2 − h̄2)
2 + (h3 − h̄3)

2)dx dt

where C1 and C2 are constants depending on the L∞(Q ) bounds of the coefficients and av only. Moreover, for λ first chosen
large and then T chosen sufficiently small, we have λ − C1 − C2(M + M2)e2λT > 0 and thus∫

Ω

(
(w − w̄)2 + (y − ȳ)2 + (z − z̄)2)(x, s)dx

� 2
∫
Q s

(
(h1 − h̄1)

2 + (h2 − h̄2)
2 + (h3 − h̄3)

2)dx dt. (24)

Taking the supremum over 0 � s � T on both sides, we obtain

‖w − w̄‖X + ‖y − ȳ‖X + ‖z − z̄‖X

� 3(2T )1/2(‖h1 − h̄1‖X + ‖h2 − h̄2‖X + ‖h3 − h̄3‖X
)
.

We must choose T sufficiently small because of previous assumptions, but we can also choose T such that 3(2T )1/2 < 1,
which ensures that the mapping A is a strict contraction. By Banach’s fixed point theorem, there exists a unique solution
(w, y, z) ∈ Z 3 ∩ X3 to the PDE system (19)–(21).

It follows that for sufficiently small T , there exists a unique non-negative solution (S, I, R) ∈ Z 3 satisfying (2)–(4). Fur-
thermore, 0 � S(x, t), I(x, t), R(x, t) � eλT M a.e. (x, t) ∈ Q . �
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Theorem A.2. There exists an optimal control v∗ ∈ V that minimizes the functional J (v).

Proof. The control variable v is uniformly bounded in Q and S , I , and R are also uniformly bounded in Q by Theorem A.1.
Therefore infv∈V J (v) > −∞ and there exists a minimizing sequence vn ∈ V such that limn→∞ J (vn) = infv∈V J (v). Theo-
rem A.1 allows us to define (Sn, In, Rn) = (S, I, R)(vn) for each n. To obtain uniform bounds on ‖Sn‖Z , ‖In‖Z , and ‖Rn‖Z

for all n, we multiply the PDEs satisfied by Sn , In , and Rn by the test functions Sn , In , and Rn , respectively, and integrate
over the domain Q s = Ω × (0, s) for arbitrary s ∈ (0, T ]. We then estimate

1

2

∫
Ω

((
Sn)2

(x, s) + (
In)2

(x, s) + (
Rn)2

(x, s)
)

dx

+ θ

2

∫
Q s

(∣∣∇ Sn
∣∣2 + ∣∣∇ In

∣∣2 + ∣∣∇Rn
∣∣2)

dx dt

� 1

2

∫
Ω

(
(S0)

2 + (I0)
2 + (R0)

2)dx + C3

∫
Q s

(∣∣Sn
∣∣2 + ∣∣In

∣∣2 + ∣∣Rn
∣∣2)

dx dt

−
∫
Q s

β In(Sn)2
dx dt +

∫
Q s

β Sn(In)2
dx dt −

∫
Q s

μ2
(

In)2
dx dt (25)

where C3 is a positive constant that depends on θ and the bounds on the bk
i and (bk

i )xi coefficients. Noting that our state
variables are uniformly bounded in Q (Theorem A.1), we collect similar squared terms in (25) and obtain∫

Ω

((
Sn)2 + (

In)2 + (
Rn)2)

(x, s)dx

+ θ

∫
Q s

(∣∣∇ Sn
∣∣2 + ∣∣∇ In

∣∣2 + ∣∣∇Rn
∣∣2)

dx dt

�
∫
Ω

(
(S0)

2 + (I0)
2 + (R0)

2)dx + C4

∫
Q s

(∣∣Sn
∣∣2 + ∣∣In

∣∣2 + ∣∣Rn
∣∣2)

dx dt (26)

where C4 is a new positive constant which depends on θ and the L∞(Q ) bounds on the coefficients, control variable, and
state variables. In particular, we have∫

Ω

((
Sn)2 + (

In)2 + (
Rn)2)

(x, s)dx

�
∫
Ω

(
(S0)

2 + (I0)
2 + (R0)

2)dx + C4

∫
Q s

(∣∣Sn
∣∣2 + ∣∣In

∣∣2 + ∣∣Rn
∣∣2)

dx dt.

An application of Gronwall’s Inequality yields∫
Q

(∣∣Sn
∣∣2 + ∣∣In

∣∣2 + ∣∣Rn
∣∣2)

dx dt � T
(
1 + C4T eC4 T )∫

Ω

(
(S0)

2 + (I0)
2 + (R0)

2)dx. (27)

Thus, (27) together with (26) gives

sup
s∈(0,T )

(∫
Ω

((
Sn)2

(x, s) + (
In)2

(x, s) + (
Rn)2

(x, s)
)

dx

)

+ θ

∫
Q

(∣∣∇ Sn
∣∣2 + ∣∣∇ In

∣∣2 + ∣∣∇Rn
∣∣2)

dx dt

� C5

∫
Ω

(
(S0)

2 + (I0)
2 + (R0)

2)dx

where the constant C5 depends on T , θ , and L∞(Q ) bounds on the states, control and coefficients. From this, we can
conclude that ‖Sn‖Z , ‖In‖Z , ‖Rn‖Z are uniformly bounded independent of n. From these bounds and the PDE system, we
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can conclude that ‖Sn
t ‖, ‖In

t ‖, ‖Rn
t ‖ are uniformly bounded in L2(0, T ; H1(Ω)∗) independent of n. In light of these uniform

bounds and because vn ∈ L∞(Q ), there exists subsequences Sn , In , Rn and vn such that Sn ⇀ S∗ , In ⇀ I∗ , Rn ⇀ R∗ , and
vn ⇀ v∗ weakly in Z . Furthermore, Sn

t ⇀ S∗
t , In

t ⇀ I∗t , and Rn
t ⇀ R∗

t weakly in L2(0, T ; H1(Ω)∗).
Because of terms like

∫
Q β In Snφ1 dx dt in the variational formulation, stronger convergence results are necessary to

pass the limit as n → ∞ and conclude that S∗, I∗, R∗ are the states associated with the optimal control v∗ . Using the
compactness result in Corollary 4 of Theorem 5 in [34], we have Sn → S∗ , In → I∗ , and Rn → R∗ strongly in L2(Q ). This is
sufficient to conclude (S∗, I∗, R∗) = (S, I, R)(v∗).

To finish the proof, recall Φ(·) is a lower semi-continuous convex function in the objective functional. Because every
lower semi-continuous convex function of a real vector space remains lower semi-continuous when supplied with the weak
topology [35], we have∫

Q

Φ
(

v∗)dx dt � lim inf
n→∞

∫
Q

Φ
(

vn)dx dt.

This property gives us

J
(

v∗) =
∫
Q

(
AI∗ − B S∗ + Φ

(
v∗))dx dt

� lim inf
n→∞

∫
Q

(
AIn − B Sn + Φ

(
vn))dx dt

= lim
n→∞

∫
Q

(
AIn − B Sn + Φ

(
vn))dx dt

= inf
v∈V

J (v).

Thus, v∗ minimizes the objective functional and is an optimal control. �
Theorem A.3 (Sensitivities). The mapping v ∈ V → (S, I, R) ∈ Z 3 is differentiable in the sense that there exists Ψ1 , Ψ2 , Ψ3 ∈ Z such
that

S(v + εh) − S(v)

ε
⇀ Ψ1,

I(v + εh) − I(v)

ε
⇀ Ψ2,

R(v + εh) − R(v)

ε
⇀ Ψ3

in Z as ε → 0 for any v ∈ V and h ∈ L∞(Q ) such that v + εh ∈ V for ε small. Furthermore, Ψ1 , Ψ2 , Ψ3 solve system (6)–(8).

Proof. Choose h ∈ L∞(Q ), v ∈ V such that (v + εh) ∈ V for ε small. Define (Sε, Iε, Rε) = (S, I, R)(v + εh). The quotients
( Sε−S

ε ), ( Iε−I
ε ), and ( Rε−R

ε ) satisfy system

∂( Sε−S
ε )

∂t
−

n∑
i, j=1

(
a1

i j

(
Sε − S

ε

)
xi

)
x j

+
n∑

i=1

(
b1

i

(
Sε − S

ε

))
xi

= b

((
Sε − S

ε

)
+

(
Rε − R

ε

))
− μ1

(
Sε − S

ε

)
− β

(
Sε Iε − S I

ε

)
−

(
a(v + εh)Sε − av S

ε

)
,

∂( Iε−I
ε )

∂t
−

n∑
i, j=1

(
a2

i j

(
Iε − I

ε

)
xi

)
x j

+
n∑

i=1

(
b2

i

(
Iε − I

ε

))
xi

= β

(
Sε Iε − S I

ε

)
− μ2

(
Iε − I

ε

)
,

∂( Sε−S
ε )

∂t
−

n∑
i, j=1

(
a3

i j

(
Rε − R

ε

)
xi

)
x j

+
n∑

i=1

(
b3

i

(
Rε − R

ε

))
xi

= −μ1

(
Rε − R

)
+

(
a(v + εh)Sε − av S

)
(28)
ε ε
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with initial and boundary conditions given by(
Sε − S

ε

)
(x,0) = 0,

(
Iε − I

ε

)
(x,0) = 0,

(
Rε − R

ε

)
(x,0) = 0 for x ∈ Ω,

∂( Sε−S
ε )

∂ν
= 0,

∂( Iε−I
ε )

∂ν
= 0,

∂( Rε−R
ε )

∂ν
= 0 on ∂Ω × (0, T ).

In system (28), we rewrite terms like

a(v + εh)Sε − av S

ε
= ahSε + Sε − S

ε
av

so that as ε → 0, we may obtain ahS + avΨ1. Noting that the control and state variables are bounded above by vmax and
M > 0, respectively, and independent of ε , we find that for any s ∈ (0, T ]∫

Ω

((
Sε − S

ε

)2

(x, s) +
(

Iε − I

ε

)2

(x, s) +
(

Rε − R

ε

)2

(x, s)

)
dx

+ θ

∫
Q s

(∣∣∣∣∇
(

Sε − S

ε

)∣∣∣∣
2

+
∣∣∣∣∇

(
Iε − I

ε

)∣∣∣∣
2

+
∣∣∣∣∇

(
Rε − R

ε

)∣∣∣∣
2)

dx dt

� C6

∫
Q s

((
Sε − S

ε

)2

+
(

Iε − I

ε

)2

+
(

Rε − R

ε

)2)
dx dt + C7

∫
Q s

(ah)2 dx dt

where C6 is a constant which depends on θ and the L∞(Q ) bounds on the states, control, and coefficients and C7 depends
only on vmax and M . After an application of Gronwall’s inequality and simplification, we have

sup
s∈(0,T ]

(∫
Ω

((
Sε − S

ε

)2

(x, s) +
(

Iε − I

ε

)2

(x, s) +
(

Rε − R

ε

)2

(x, s)

)
dx

)

+ θ

∫
Q

(∣∣∣∣∇
(

Sε − S

ε

)∣∣∣∣
2

+
∣∣∣∣∇

(
Iε − I

ε

)∣∣∣∣
2

+
∣∣∣∣∇

(
Rε − R

ε

)∣∣∣∣
2)

dx dt

� C7

∫
Q

(ah)2 dx dt. (29)

Thus, the right-hand side of (29) is bounded independent of ε . We can conclude that ‖( Sε−S
ε )‖Z , ‖( Iε−I

ε )‖Z , ‖( Rε−R
ε )‖Z are

uniformly bounded for ε small, which justifies the existence of Ψ1, Ψ2 and Ψ3 ∈ Z and the convergence of the quotients,(
Sε − S

ε

)
⇀ Ψ1,

(
Iε − I

ε

)
⇀ Ψ2,

(
Rε − R

ε

)
⇀ Ψ3 in Z .

As in the previous proof, we can also conclude(
Sε − S

ε

)
t
⇀ (Ψ1)t,

(
Iε − I

ε

)
t
⇀ (Ψ2)t,

(
Rε − R

ε

)
t
⇀ (Ψ3)t

in L2(0, T ; H1(Ω)∗) and(
Sε − S

ε

)
→ Ψ1,

(
Iε − I

ε

)
→ Ψ2,

(
Rε − R

ε

)
→ Ψ3

in L2(Q ). The strong convergences are used to justify convergence of terms like Sε Iε−S I
ε , for example. Together, the strong

and weak convergence results justify that Ψ1,Ψ2,Ψ3 solve (6)–(8). �
Theorem A.4. Given an optimal control v∗ and corresponding state solution (S∗, I∗, R∗), there exists a weak solution (p1, p2, p3) ∈
Z 3 satisfying the adjoint system (9)–(11).

Proof. Because the adjoint system is linear in the adjoint variables, there exists a solution (p1, p2, p3) satisfying (9)–(11)
[7]. �
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Theorem A.5. When T is sufficiently small, the solution of the optimality system is unique.

Proof. Suppose (S, I, R), (p1, p2, p3) and ( S̄, Ī, R̄), (p̄1, p̄2, p̄3) are two solutions of (1)–(3), (9)–(11) with control charac-
terization (12). Assuming Φ(v) = cv2 for some c > 0 in the objective functional, the associated control characterizations
are

v = min

((
(p1 − p3)aS

2c

)+
, vmax

)
, v̄ = min

((
(p̄1 − p̄3)aS̄

2c

)+
, vmax

)
.

For some λ > 0, let

w = e−λt S, y = e−λt I, z = e−λt R,

q1 = eλt p1, q2 = eλt p2, q3 = eλt p3,

w̄ = e−λt S̄, ȳ = e−λt Ī, z̄ = e−λt R̄,

q̄1 = eλt p̄1, q̄2 = eλt p̄2, q̄3 = eλt p̄3.

We consider the differences w − w̄ , y − ȳ, z − z̄, q1 − q̄1, q2 − q̄2, and q3 − q̄3. Using similar techniques as those in the proof
of Theorem A.1, we obtain

1

2

∫
Ω

(
(w − w̄)2(x, T ) + (y − ȳ)2(x, T ) + (z − z̄)2(x, T ) + (q1 − q̄1)

2(x,0) + (q2 − q̄2)
2(x,0) + (q3 − q̄3)

2(x,0)
)

dx

+ (
λ − C8 − C9e2λT )∫

Q

(|w − w̄|2 + |y − ȳ|2 + |z − z̄|2 + |q1 − q̄1|2 + |q2 − q̄2|2 + |q3 − q̄3|2
)

dx dt

+ θ

2

∫
Q

(∣∣∇(w − w̄)
∣∣2 + ∣∣∇(y − ȳ)

∣∣2 + ∣∣∇(z − z̄)
∣∣2 + ∣∣∇(q1 − q̄1)

∣∣2 + ∣∣∇(q2 − q̄2)
∣∣2 + ∣∣∇(q3 − q̄3)

∣∣2)
dx dt � 0

for constants C8 and C9, which depend on the L∞ bounds of the coefficients, states, and controls. If we choose λ sufficiently
large and T sufficiently small so that λ − C8 − C9e2λT > 0, then we must have w = w̄ , y = ȳ, z = z̄, q1 = q̄1, q2 = q̄2, and
q3 = q̄3. Therefore, S = S̄ , I = Ī , R = R̄ , p1 = p̄1, p2 = p̄2, and p3 = p̄3. Finally, because the optimal control is characterized
in terms of the states and the adjoints, we have v = v̄ . �
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