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Estimating R0:  from individual parameters

c = contact rate
p = probability of transmission given contact
D = duration of infectiousness

So why can’t we just estimate it from individual-level parameters?
Problems:
• for many diseases we can’t estimate the contact rate, since 

“contact” is not precisely defined.  The exceptions are STDs and 
vector-borne diseases, where contacts are (in principle) 
countable, though heterogeneity complicates this.

• Estimates based on R0 expressions are highly model-dependent.
• E(c p D) ∫ E(c) E(p) E(D) in general.

In its simplest form, R0 = β/γ = c p D where

Epidemic time series data are very useful in estimating R0.

Simple analysis of the SIR model yields two useful approaches:

1) If the exponential growth rate of the initial phase of the 
epidemic is r, then 

2) Equivalently, if td is the doubling time of the number infected, 
then 

3) If s0 and s∝ are the susceptible proportions before the 
epidemic and after it runs to completion, then

Estimating R0:  from epidemic data

( ) ( )
)(

lnln

0

0
0

∞

∞

−
−

=
ss

ssR

dt
DR 2ln10 +=

rDR += 10

All of those estimates are based on simple ODE models, and hence
assume exponentially distributed infectious periods.

Wallinga and Lipsitch (2007, Proc Roy Soc B 274: 599-604) analyze 
how the distribution of the serial interval influences the 
relationship between r and R0.

They find

where M(z) is the moment generating function for the distribution of 
the serial interval.

1. Can calculate R0 from r for any distribution of serial interval.

2. Prove that the upper bound on R0 is R0 = erT where T is the 
mean serial interval.

Estimating R0:  from epidemic data
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If case data are collected in discrete intervals, estimation from 
continuous-time models is difficult.

Ferrari et al (2005, Math Biosci 198: 14-26) derive an approach 
based on chain binomial models that provides a maximum-
likelihood estimator for R0 and the associated uncertainty.

Estimating R0:  from epidemic data

But, like the s∝ approaches, it requires that the epidemic runs to 
its natural completion.

Estimation from outbreaks when R0 < 1

Branching process models allow analysis of outbreak size to make
inference about the effective reproductive number when Reff<1.

Farrington et al (2003) Biostatistics 4: 279-295.

Outbreak size
Posterior distribution 

on Reff under two 
models

Measles outbreaks in 
vaccinated populations, UK

Anderson & May derive a number of simple expressions for 
R0 in the endemic setting.  

Their results depend on the age-dependent rate of mortality 
in the population μ(a), which yields a “Type I” or “Type II”
mortality curve.

Estimating R0:  from endemic data

Type I

Type II

Anderson & May derive a number of simple expressions for R0 in 
the endemic setting.  

For Type I mortality, 

where L is the mean lifespan and A is the mean age at first 
infection.

For Type II mortality, exactly.

Of course, these simple estimates depend on strong assumptions
about random mixing, no heterogeneities, no age-dependence 
of the force of infection, and constant population size.

See later chapters of Anderson & May, or Dietz (1993) Stat Meth 
Med Res 2: 23-41, for more advanced treatments.

Estimating R0:  from endemic data

ALR ≈0

ALR =0

From age-seroprevalence data, 

the age-dependent force of infection can be estimated directly.

To estimate R0, need to make assumption about WAIFW matrix.

Estimating R0:  from age-seroprevalence data

And see comprehensive review: “Estimation of the basic 
reproductive number for infectious diseases from age-stratified 
serological survey data” (2001) Appl Statist 50: 251-292.



3

Observed offspring distribution for 
SARS in Singapore

Fitting single distributions

Observed distribution of 
incubation periods for SARS

t4       6      8     10     12

days

Fitting single distributions: method of moments

A fancy name for a simple idea:
For most standard probability distributions, the parameters 
can be expressed in terms of the moments of the 
distribution (e.g. the mean and variance).

e.g. exponential distribution, f(x) = λ exp(-λ x)
λ = 1/μ

Method of moments:  calculate the sample moments from 
your data, and plug them into these expressions

Estimates may be biased, but this is a good way to get a quick 
estimate.

μλ 1≈

Fitting single distributions: maximum likelihood

The likelihood is the probability of observing the data given the 
model (and parameter values for the model).

Y = data set, {Y1, Y2, … Yn}
p = model parameters 

Then the likelihood is Λ = Pr(Y|p), 
where the “model” (in this case the probability distribution 
we’re fitting) will determine the form of the probability.

The basic idea of maximum likelihood estimation (MLE) is to 
find the parameter set that maximizes the likelihood of 
observing your data.

Example: the binomial distribution

The binomial distribution describes the number of successes 
out of N trials, if each trial has probability p of success.

For a single observation from a binomial distribution (say, the 
number of susceptibles infected in a day, out of a beginning 
total of N), the likelihood that k out of N are infected, if the
per capita infection probability is p, is

If we have n independent observations of this process, each 
with the same number of susceptibles N, and the number 
infected on the ith observation is ki, then the likelihood is

Likelihood example: binomial distribution

It is conventional to work with the log-likelihood, L = log( ), for 
two reasons:

(1) It turns the product (which arises from the joint probability 
of many independent observations) into a sum.

(2) The probabilities are often very small numbers (usually 
<<1!), and working with a product of small numbers 
causes numerical problems in computation.

The log-likelihood for our binomial problem is:

Likelihood example: binomial distribution

We now want to find the parameter p that maximizes L.

For this simple example, it can actually be calculated 
analytically, and yields a sensible answer:

Example plot of 
binomial likelihood 
curve and fit to data, 
from Bolker 200X.

probability p
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Maximum likelihood estimation

Other common distributions also have simple MLE parameters:

e.g. the ML estimate for the mean of the Poisson, normal, 
exponential, gamma, and negative binomial distributions are all 
equal to the mean of the data.

For most problems, though, this maximization cannot be solved 
analytically, so we optimize numerically.

It is conventional to minimize the negative log-likelihood (NLL).

For more complex distributions, such as the gamma or negative 
binomial, this can be a multi-dimensional optimization problem.

This can be handled in various software packages:

fminsearch in Matlab (not Octave?), optim in R, ____ in Python (?)

In addition to finding the optimal value (the maximum likelihood
estimate) it is very useful to examine the likelihood curve in the 
area near the MLE.  

This gives information how the likelihood changes with the 
parameter value, and tells you about uncertainty.

Maximum likelihood estimation

From Ferrari et al (2005) 

Maximum likelihood estimation

For a multivariate problem, this will be a likelihood surface, and 
gives information about correlation between parameter 
estimates as well as uncertainty.

Example plot of 
likelihood surface 
from MLE fit to a 
gamma distribution
(Bolker 200X)

Bayesian vs frequentist statistics

The maximum-likelihood approach we just saw is an example of 
frequentist statistics.

In frequentist statistics, parameters are assumed to have fixed 
values that we are trying to estimate as precisely as possible.

In Bayesian statistics, in contrast, parameters are treated as 
random variables, with probabilities assigned to particular 
values of a parameter to reflect the degree of evidence for that
value.

Fitting single distributions: Bayesian analysis

Bayesian estimation of distribution parameters is also based on 
the likelihood, but there are two major differences from MLE:

• The likelihood is combined with a prior probability distribution, 
which represents information from other sources regarding the 
values of the parameters.

These elements are combined to yield a posterior probability 
distribution, which represents the our best estimate of the 
probability that the parameter takes certain values.

2. The Bayesian parameter estimates are usually given as the 
mean of the posterior distribution rather than the mode (as for 
MLE), because the mean encapsulates more information 
about the shape of the distribution.

Fitting single distributions: Bayesian analysis

In the setting of parameter estimation, if we have a dataset Y and 
model parameters θ, then Bayes rule states that the posterior 
distribution on θ is

( ) ( ) ( )
( )YP

PYP
YP

θθ
θ =

( )θYP is the likelihood.

( )θP is the prior distribution, which we define.

( )YP is the probability of the data.
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Fitting single distributions: Bayesian analysis

How do we choose a prior distribution?

Many opinions on this:
• It is either a useful way to incorporate other information about

your system or a “necessary evil”.
• If a useful tool, then choose a distribution that reflects your 

prior information about the parameter.
• If a necessary evil, then 

- choose a “flat prior” that doesn’t include much information 
about particular values (e.g. a uniform distribution)

- or choose a prior that simplifies the computation

Informative prior
Flat prior

Fitting single distributions: Bayesian analysis

How do we find the probability of the data? 
(and what does it even mean?)

There are two important facts about the P(Y) term

• It is a constant.  This is very useful for some numerical 
techniques where we’re interested in the ratio of 
posterior probabilities.

• The posterior probability distribution must be normalized.  
So we can write:

( ) ( ) ( )
( ) ( )∫

=
θθθ

θθ
θ

dPYP
PYP

YP

For simple problems this integral can be calculated numerically.
For high-dimensional problems we need other tricks (MCMC).

Fitting single distributions: Bayesian analysis

Simple rule to remember is that the posterior is proportional to
the product of the likelihood and the prior.

( ) ( ) ( )
( ) ( )∫

=
θθθ

θθ
θ

dPYP
PYP

YP
prior

likelihood

posterior

Fitting single distributions: Bayesian analysis

The more “informative” your prior, the more it will influence the 
shape of your posterior.

Example: 
Bayesian estimates 
of binomial 
probability with 
different prior 
distributions
(Bolker 200X)

parameter value

Fitting single distributions: Bayesian analysis

For multi-parameter distributions, you get a multivariate posterior.  
e.g. for a gamma distribution with parameters {a,s}

To learn about parameters individually, look at marginal distributions:

Or take mean values:

Fitting single distributions: Bayesian analysis

Example: 
Bivariate and 
marginal distributions 
for a Bayesian fit with 
a gamma distribution
(Bolker 200X)
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Fitting more complex models

So far we’ve been estimating the parameters of probability 
distributions, but we’ll often want to estimate parameters from more 
complex models – sometimes even from our whole dynamic model.

The challenge here is to define the likelihood for the model.  
Because the likelihood is based on probabilities, it requires that we 
think about the stochastic components of the processes that 
generated the data – including both the underlying mechanisms and 
the observation process.

This is not a simple problem, but there are two main approaches:

1) Consider whether the basic mechanism of the model 
corresponds to a clearly defined stochastic process.

2) Do a rough fit of the model to the data, and examine the 
residuals to look for systematic patterns that correspond to basic 
distributions.

Fitting more complex models

Some rules of thumb in defining likelihoods: 

When the quantities in the data are:

Proportions consider a binomial distribution

Rare events consider a Poisson distribution, or negative 
binomial if there seems to be over-dispersion

Sums of many contributions consider a normal distribution

Products of multiplicative probabilities consider a log-normal 
distribution

Look for the corresponding patterns in the model residuals.

These are not definitive rules, just starting points.  See Hilborn & 
Mangel (1997) for an excellent discussion of this problem.

Examples of clear stochastic mechanisms:
1) In an epidemic model, if we know the number of susceptible 

and infectious individuals at each point in time, then the 
likelihood is binomial:

S(t) = the number of susceptible individuals
λ(t) = the force of infection = β I(t)/N(t)

p(t) = Pr(susc. becomes infected in time Δt) = 1−exp(− λ(t)Δt)

and the number of new infections generated in (t,t+Δt) is  
NewCases ~ Binomial (S(t),p(t))

Fitting more complex models

2) If data are available in (close to) continuous time, then 
individual infection can be modelled as an exponential process
with force of infection varying in time.

(example later in lecture)

Fitting the whole model:  sum-of-squares (χ2)

where Oi = Observed value at point i (from real data)

Ei = Expected value at point i (from the model output)

Minimizing this quantity usually yields a decent fit to the data.

If you simply can’t see how to define a likelihood for your model, 
don’t despair!  

Many studies are published based on simpler fitting procedures, 
most frequently the method of least squares, or its close 
relative the χ2 goodness-of-fit, which is based on minimizing 
the statistic

Estimating uncertainties: MLE approach

Negative log-likelihood curves and surfaces map out the 
“badness-of-fit” of different parameter values to the data.

We can analyze the curvature of these surfaces to get confidence 
intervals for our estimates.

Likelihood slices and profiles

Likelihood slice:  fix the values of all but one parameter, and 
calculate the likelihood for a range of values of that parameter.

Likelihood profile:  choose a range of values for the focal 
parameter, and for each value maximize the likelihood with 
respect to all other parameters.

profiles

(Figures from Bolker 200X)
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Estimating uncertainties: MLE approach

Now we can calculate confidence intervals for our ML parameter 
estimates based on likelihood curves (for 1-d problems) or 
likelihood profiles (for higher-dimensional problems).

** Don’t use likelihood slices!! **

The difference in NLL values between the MLE and other points 
on a likelihood profile is asymptotically χ2-distributed with one 

degree of freedom.
(the argument closely parallels that for the likelihood ratio test)

To find the (1-α)% confidence limits on our estimate, we find 
the parameter values corresponding to NLL values of

( ) 2/1
2

1
αχ −+MLENNL

Estimating uncertainties: MLE approach

parameter value

(Hopefully that’s enough info that you can calculate profile confidence 
intervals yourself.  If not, then R has in-built functions profile and 
confint that will do it for you (in the bbmle or emdbook packages).)

(Figure from Bolker 200X)

Estimating uncertainties: Bayesian approach

Instead of confidence intervals, Bayesians calculate so-called 
credible intervals which are the region in the center of the 
posterior distribution containing 95% of the density.

(Figure from Bolker 200X)

parameter value

Estimating uncertainties: Quadratic approximation

The likelihood profile approach is great when you have a small 
number of parameters (i.e. 2 or 3), 

but becomes computationally impractical for models with more 
parameters, since for an n-parameter model, you have to 
optimize over  n−1 parameters for each point on your 
likelihood profile (never mind doing a 2-D profile!).

Luckily, classical likelihood theory tells us that 
we can learn about the variance of our 
estimate by considering the second 
derivative of the likelihood curve – essentially 
by using a quadratic approximation to the 
region around the minimum.

Estimating uncertainties: Quadratic approximation

It turns out that, asymptotically (i.e. if the data set is large enough), 
the sampling distribution for the parameter is asymptotically 
normal with standard deviation

the width of the interval that gives (1-α) confidence is

To compute the second derivative numerically, use

where N(α) is the appropriate quantile from the standard normal 
distribution.  

Estimating uncertainties: Quadratic approximation

For multi-parameter models, the same idea applies, but we need 
to work with the matrix of second derivatives (the Hessian). 

(For stats buffs: the Hessian matrix = −Fisher information matrix)

If we evaluate the Hessian at the MLE and invert it, we obtain the 
variance-covariance matrix for the parameters:
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Estimating uncertainties: Quadratic approximation

For multi-parameter models, the same idea applies, but we need 
to work with the matrix of second derivatives (the Hessian). 

parameter 1

(Figure from Bolker 200X)
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Estimating uncertainties: Bootstrapping

Bootstrapping is a completely different approach to estimating 
uncertainties.  It is completely non-parametric (i.e. it doesn’t 
depend on any assumptions about the distribution that 
underlies your data) and relies on heavy computation.

Basic idea:  simulate new data sets by randomly 
re-sampling with replacement from the observed data.

1 2 3 4 5 6 7 8 3 5 4 6 7 6 2 4

1 3 7 3 5 4 4 2

7 8 8 3 4 1 6 2

6 2 8 5 3 7 1 3

Real data
Simulated data

1. Generate N “new” data sets

2. Calculate your parameter for 
each data set.

3. Distribution of these estimates 
reflects the uncertainty in your 
true estimate.

Calculate true 
estimate of 
parameter 
value.

Model selection

So far we’ve focused entirely on how to fit the parameters of a 
single model to data.  

But how do we know that we’re using the best model? 
Or that we need all those parameters?

Luckily, there is a set of formal tools for comparing models in 
the context of data.  

What all of these tools have in common is:
1.  Models that fit the data better is preferred.
2.  Parsimonious models are preferred (i.e. models are 

penalized for having more parameters). 

The core text in this field is Burnham & Anderson, Model Selection and 
Multi-Model Inference.

Model selection: The likelihood ratio test

Model A is nested in model B if it corresponds to some special case 
of model B where one or more parameters have particular values.

e.g. f(x) = ax2+c is nested in g(x) = ax2+bx+c for b=0.

An epidemiological example might be whether an additional
parameter is justified to describe the possible effect of male 

circumcision on male female transmission of HIV.

The likelihood ratio test provides a pair-wise comparison between 
two models when one is nested within the other. 

The test computes a statistic that compares the log-likelihoods 
calculated from the two models, and determines whether the 
additional complexity is justified by the data.

Model selection: Akaike information criterion

The Akaike information criterion (AIC) provides a more flexible 
framework for model selection, that does not require models to 
be nested and can compare many models at once.

An AIC value can be calculated for any model which has been fit 
by MLE, and takes the value

AIC = -2L + 2k
where L is the log-likelihood of the MLE and k is the number of 

free parameters in the model.

For small sample sizes, i.e. when the number of data points n is 
such that n/k < 40, a corrected AIC should be used:

( )
1
12

−−
+

+=
kn
kkAICAICc

Model selection: Akaike information criterion

Many models can be compared by simply comparing their AIC 
values.  The model with the lowest AIC value is preferred.

Because only the relative values of AICs matter, they are often 
reduced to differences from the lowest value obtained:

As a rule of thumb:
- models with AIC <2 units apart have roughly equivalent support
- models with AIC 4-7 units apart are clearly distinguishable
- models with AIC >10 units apart are definitely different

minAICAICAIC −=Δ ii
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Model selection: Akaike weights and model averaging

The ΔAIC values can also be used to calculate the Akaike weight
associated with each model i,

∑ Δ−

Δ−

=

j

i j

i

e
ew 2/

2/

AIC

AIC

These weights can be used for model averaging, 
i.e. to generate an “average” output from several models that is 
weighted by the support for each model from the data.

Morbidity & Mortality Weekly Report (2003)

SARS transmission chain, Singapore 2003

Example: Parameter estimation and model selection

Example: parameter estimation and model selection

For details on this example, see Lloyd-Smith et al (2005) Nature 438: 355-
359 (and especially the online Supplementary Information).

Observed offspring distribution, SARS in Singapore

Z  

ν

Poisson

Constant

Candidate model 1 Completely 
homogeneous population, all ν

= R0

Recall Z~Poisson(ν)

Z  

ν

Geometric

Exponential

Candidate model 2 (ODE models)
Constant recovery rate,

homogeneous transmission 

Recall Z~Poisson(ν)

Z  

ν

Negative binomial

Gamma

0.1                        1                          10     100              ∞
Dispersion parameter, k

Candidate model 3
A more flexible family of distributions
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0.1                        1                          10     100              ∞
Dispersion parameter, k

Z  

ν

greater individual variation

ν ~ gamma Z ~ negative binomial Singapore SARS outbreak, 2003

Singapore SARS outbreak, 2003

ν ~ gamma

ν ~ exponential

ν ~ constant

νDistribution

>0.99990Z ~ Negative binomial

< 0.000141.2Z ~ Geometric

< 0.0001250.4Z ~ Poisson

Akaike weightΔAICcZ distribution

Model selection strongly favours negative binomial distribution.
0.1                        1                          10     100              ∞

Z  

ν

Geometric, 
k=1

Poisson, 
k→∞

SARS in Singapore, 
k=0.16

90% confidence interval estimated by bootstrapping

Example: MLE parameters for an observed outbreak

Eichner & Dietz (2003) Am J Epi 158: 110-117

Smallpox outbreak in Abakaliki, Nigeria in 1967  (32 cases)

Example: MLE parameters for an observed outbreak

Distribution of period from 
infection to onset of fever

(gamma distribution)

Distribution of period from 
onset of fever to onset of disease

(gamma distribution)



11

Example: MLE parameters for an observed outbreak

Estimated all relevant parameter values (R0, vaccine efficacy, contact 
rates, etc) and used profile likelihood to estimate 95% confidence intervals.

Likelihood of an individual being infected was modelled as an exponential 
process with time-varying force of infection:

Sensitivity and uncertainty analysis

Uncertainty arises from two main sources in epidemic models:

• parameter values: often unknown or imprecise

• model structure: does it capture the right mechanisms?

Uncertainty analysis aims to assess the variability in model 
outputs that arises from uncertainty in model inputs.

Sensitivity analysis extends this to determine which parameters 
(or changes in model structure) are most important in 
determining the model output, and to quantify the influence of 
each parameter on particular outputs.

Why do uncertainty analysis?
• Determine how much confidence should be placed in 

quantitative projections generated by models.  

What “error bars” should be placed on output quantities?

• Understand whether differences between model outputs (or 
between model outputs and data) are significant.

Blower et al (2000) 

Why do sensitivity analysis?
• Understand the relative importance of different mechanisms in 

generating observed patterns.

• Determine which points in the system are good targets for 
intervention efforts.

• Guide collection of further data – gather more information on 
those parameters that are most influential.
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Sensitivity and elasticity: formal definitions

The sensitivity of outcome λ to the value of parameter θ is

θ
λ

∂
∂

=S

A partial derivative since we’re holding all other parameters constant.

But parameters are measured on many different scales, making 
sensitivity values difficult to compare.

Elasticity is the proportional response to a proportional perturbation.

The elasticity of outcome λ to the value of parameter θ is

θ
λ

θ
λ

λ
θ

log
log

∂
∂

=
∂
∂

=E

Structural sensitivity

Structural sensitivity describes how changes in the design of a 
model influence its output.

There are many subjective decisions, and many assumptions, 
involved in making a model – but very few studies take the time to 
test these explicitly and show their effect on model predictions.

Why not? a)  it’s a lot of work!

b)  lack of established methods

But they should, because we don’t want our assumptions to bias the 
conclusions we draw from our models.

The ultimate structural sensitivity analysis is to have several 
independent groups of researchers work on the same problem.

e.g. avian flu emergence, foot and mouth disease in the UK, SARS
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Parameter sensitivity: Formal approaches

Formal methods exist to investigate the influence of parameter 
values on model outputs.

Univariate: vary one parameter while holding all others constant.

Bivariate: vary two parameters while holding all others constant.

Complete: vary all parameters at once. 

Latin Hypercube Sampling (LHS) is a popular 
approach for epidemic models.

• Full-factorial design: use every value of every 
parameter, and examine output from 
every possible combination.

• Efficient sampling design: use fewer parameter 
values, chosen carefully to avoid bias.

XXXX
XXXX
XXXX
XXXX

X
X

X
X

Latin Hypercube Sampling

1. Define probability distribution functions for parameters based on 
uncertainty.

2. Calculate the necessary number of simulations (N > 4/3 K, where 
N is the number of simulations and K the number of parameters).

3. Divide the range of each 
parameter into N equi-probable 
intervals.

4. Create a LHS table of 
parameter sets to simulate.

XXXX
XXXX
XXXX
XXXX

X
X

X
X

(Blower & Dowlatabadi, 1994)

Latin Hypercube Sampling

5.  Perform the N simulations using parameters from the tables. 
Collect the values of model outputs of interest.

6. Uncertainty analysis: the distribution of values of model outputs 
will be representative of the range of probable outcomes for 
the parameter distributions chosen.

7. Sensitivity analysis: use Partial Rank Correlation Coefficients
(PRCC) to establish the statistical relationship between each 
parameter and the model output.

PRCCs measure the degree of correlation between one parameter 
and one model output, while keeping all other parameter values 
fixed.

Software for LHS (and other sensitivity/uncertainty analyses) is free 
online at http://simlab.jrc.cec.eu.int/

(Blower & Dowlatabadi, 1994) Parameter sensitivity: ad hoc approaches
In practice, many (most?) disease modelling studies use less 

formal approaches to sensitivity analysis.

Common approaches include:

Identify parameters of interest for 
applied questions (e.g. parameters 
describing control measures) and 
perform univariate or bivariate 
analysis of sensitivity to them.

Construct “scenarios”
depicting possible courses 
of action, and study model 
outputs that result.


