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Abstract. We consider an optimal fishery harvesting
problem using a spatially explicit model with a semilinear el-
liptic PDE, Dirichlet boundary conditions, and logistic pop-
ulation growth. We consider two objective functionals: maxi-
mizing the yield and minimizing the cost or the variation in
the fishing effort (control). Existence, necessary conditions,
and uniqueness for the optimal harvesting control for both
cases are established. Results for maximizing the yield with
Neumann (no-flux) boundary conditions are also given. The
optimal control when minimizing the variation is character-
ized by a variational inequality instead of the usual algebraic
characterization, which involves the solutions of an optimal-
ity system of nonlinear elliptic partial differential equations.
Numerical examples are given to illustrate the results.

Key Words: Optimal fishery harvesting, fisheries man-
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1. Introduction. There is an ongoingdebate on the benefits of
marine reserves (regions of no-harvest) in the management of fisheries.
There are several recent issues of Natural Resource Modeling Journal
devoted to fishery management, and we call attention to the survey
paper of Quinn II [2003]. He traced the development of fisheries models
from 1900 to the 21st century. He pointed out future fishery models will
need to deal better with habitat and spatial concerns and to understand
the effects of harvesting on the ecosystem. Managers have begun to
use spatial management instruments, in the form of both permanent
and temporary closures. Optimal control theory can be used to design
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optimal harvesting strategies including temporal and spatial features.
Our work shows that under certain conditions, marine reserves are part
of the optimal strategy.

Bioeconomic features and optimization of yield in harvesting models
were originally treated using ordinary differential equations (ODEs)
with time as the underlying variable. Clark’s [1985, 1990] books pro-
vide a foundation to use optimal control theory as a useful tool for
fisheries management. See also Walters and Martell [2004] for an in-
tensive discussion of fisheries-stock assessment and management.

Spatial features were introduced with space as a discrete variable,
in metapopulation models with ODEs. Gordon [1954] recognized the
misallocation of harvest effort in space in a simple model of two spa-
tially isolated fishing grounds. One of his conclusions was that the
specification of the spatial distribution of harvest effort may yield sig-
nificant benefits. Tuck and Possingham [2000] used coupled spatially
explicit difference equations to model the populations of a single-species
2-patch metapopulation. They considered the problem of optimally ex-
ploiting the single-species local population that is connected to an
unharvested second local population through the dispersal of larvae.
They applied dynamic optimization techniques to determine policies
for harvesting the exploited patch by deriving an equation that im-
plicitly defines the optimal equilibrium escapement for the harvested
stock. They also considered how a reserve affects yield and spawning
stock abundance when compared to policies that have not recognized
the spatial structure of the metapopulation. Comparisons of harvest
strategies between an exploited metapopulation with and without a
harvest refuge were also made.

Sanchirico and Wilen [1999, 2001] studied a collection of discrete
substocks connected by dispersal and explored the relationship between
efficient spatial exploitation and dynamics of the resource stock. Under
different access scenarios, they explored the impacts of a reserve on
stock abundance and effort distribution (Sanchirico and Wilen [2001,
2002]). Recently, results have begun to show that the use of reserves
may be a part of the optimal harvesting strategy. Reserves may increase
efficiency for a variety of reasons (Brown and Roughgarden [1997],
Sanchirico and Wilen [2005], Herrera [2007]) because they may react
to the spatial dynamics of the resource, and different patterns of “no
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harvest zones” may result in lower costs of enforcing closures relative
to positive harvest quotas.

In contrast to these discrete space models, Neubert [2003] consid-
ered a resource existing in a continuous, finite one-dimensional spa-
tial domain with logistic growth and continuous diffusion. He assumed
Dirichlet boundary conditions (zero stock at the ends of the habitat,
depicting a situation in which the habitat everywhere outside the spa-
tial domain in question cannot support the resource) and solved for
the spatial distribution of fishing effort that maximizes the yield at the
steady state in which no reserves are imposed a priori. After rescaling
the variables, he used the model:

−d2u

dx2 = u(1 − u) − h(x)u, 0 < x < l,

u(0) = u(l) = 0,

where l is the dimensionless length parameter. The assumption of equi-
librium changed the problem of optimally controlling a PDE system
into one of controlling a coupled ODE system. Using Pontryagin’s
maximum principle, (Pontryagin et al. [1962]) with x as the under-
lying variable, he showed that no-take marine reserves are always part
of an optimal harvest designed to maximize yield. Also, he found that
the sizes and locations of the optimal reserves depend on the length
parameter. For small values of this parameter, the maximum yield is
obtained by placing a large reserve in the center of the habitat. For large
values of this parameter, the optimal harvesting strategy was a spatial
“chattering control” with infinite sequences of reserves alternating with
areas of intense fishing. Such a chattering strategy would be impossible
to actually implement due to the difficulty of monitoring the reserves.
In this paper, we extend Neubert’s work to a multidimensional spa-
tial domain and consider different types of objective functionals. Note
that in the multidimensional PDE case, one cannot use Pontryagin’s
maximum principle, thus some further analysis is needed to justify the
necessary conditions.

There also has been some related work done on harvesting prob-
lems from a mathematical viewpoint using partial differential equa-
tions (PDEs). Leung and Stojanovic [1993] studied the optimal har-
vesting control of a biological species, whose growth is governed by the
diffusive Volterra–Lotka equation. The species concentration satisfied
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a steady-state equation with no-flux (Neumann) boundary condition.
The optimal control criteria was to maximize profit, which is the differ-
ence between economic revenue and cost. They proved existence of an
optimal control with a positive lower bound under certain conditions
and characterized it in terms of the solution of an elliptic optimality
system. They constructed monotone sequences converging from above
and below to give upper and lower estimates for the solutions of the
optimality system. In the case where the limits of the upper and lower
iterates agree, the optimal control was uniquely determined.

Leung [1995] also studied the corresponding optimal control problem
for steady-state, prey–predator diffusive Volterra–Lotka systems and
obtained similar results to the single equation case (Leung and Sto-
janovic [1993]). The techniques for a priori estimates and the use of
the sensitivity and the adjoint system are similar to some of those used
here, even though the model is not a fishery application.

Cañada et al. [1998] and Montero [2000] studied an optimal control
problem for a nonlinear elliptic equation of the Lotka–Volterra type
with Dirichlet boundary condition. The conditions for the optimality
system and uniqueness of the optimal control depended on the eigen-
values of the Laplacian operator. Our problem is a bit simpler but with
different objective functionals, and we use some of their techniques.

Kurata and Shi [2008] studied a reaction-diffusion model with logistic
growth and constant effort harvesting. By minimizing an intrinsic bio-
logical energy function that is different from the yield, they obtained an
optimal spatial harvesting strategy that would benefit the population
the most. They found out a nonharvesting zone should be designed. On
the other hand, in the zone that allows harvesting, the effort should be
put at the maximum value.

Here, we analyze a harvesting problem, which is an extension of the
work of Neubert [2003], to a general multidimensional spatial domain
with different objective functionals. We are seeking an optimal fishery
harvesting strategy modeled by a semilinear elliptic PDE with Dirich-
let boundary condition. The solution u(x ) represents fish density, the
region Ω is surrounded by a completely hostile habitat, and the control
h(x ) represents the fishing effort (harvesting). The Laplacian operator
Δu describes the movement of the fish by diffusion; the rate of change
in the population is described by logistic growth. Instead of a constant
harvesting, we let the harvesting depend on spatial location.
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Our fishery model is{
−Δu = ru(1 − u) − h(x)u, x ∈ Ω,

u = 0, x ∈ ∂Ω.
(1)

Here, we have used dimensionless variables to simplify the equation,
see Neubert [2003] for details. The domain Ω is bounded in R

n with
∂Ω being C1 , and the constant r > 0 is the growth rate. This is a
spatially explicit model for harvesting and is the steady state of the
corresponding semilinear evolution problem.

We consider two fishery management problems, which require differ-
ent control sets and objective functionals. We define two control sets,
U 1 and U 2 :

U1 =
{
h(x) ∈ L2(Ω)

∣∣ 0 ≤ h(x) ≤ hmax a.e.
}
;

U2 =
{
h(x) ∈ H1

0 (Ω)
∣∣ 0 ≤ h(x) ≤ hmax a.e.

}
,

where hmax > 0 is a constant.

In Sections 2–6, we want to maximize the following objective func-
tional:

J1(h) =
∫

Ω
h(x)u(x) dx −

∫
Ω
(B1 + B2h)h dx, where h ∈ U1 ,(2)

which represents the difference between the yield and cost, where B1 ,
B2 are nonnegative constants. The B 1 term is the cost per unit of effort
when the level of effort is small, the B 2 term represents the rate at
which the wages paid rises as more labor is employed (due to scarcity
of labor), and u = u(h) is the solution of (1) with control h ∈ U 1 .
We explicitly show the dependence of u on h with the understanding
that space is the underlying variable. We want to find h∗ ∈ U 1 , such
that

J1(h∗) = max
h∈U1

J1(h).(3)

The first objective functional generalizes Neubert’s work (Neubert
[2003]) to treat two and three spatial dimensions. We can take B1 =
B2 = 0 in our analysis to get an optimal control characterization for
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his objective functional. But we can include the cost of the harvesting
effort by considering nonzero B1 , B2 . This first functional is similar to
Montero’s (Cañada et al. [1998]) when B1 = 0.

In Section 7, we maximize the yield while minimizing the variation
of fishing effort, that is, we seek to find h∗ ∈ U 2 , such that

J2(h∗) = max
h∈U2

J2(h),(4)

and

J2(h) =
∫

Ω
h(x)u(x) dx − A

∫
Ω
|∇h|2 dx, h ∈ U2 ,(5)

where A > 0 is a constant, and u = u(h) is the solution of (1) with
control h ∈ U 2 . Notice for a Dirichlet boundary condition, by Poincarë
inequality, ||∇h||L2 is equivalent to H1

0 norm. The analysis needed for
the necessary conditions in this case is different from the first case be-
cause the derivatives of the control change the calculations in the differ-
entiation of the objective functional. This second objective functional
seeks to minimize the variation in the control to eliminate the possibil-
ity of “chattering” harvest strategies like in Neubert’s work (Neubert
[2003]).

In Section 2, we give conditions for unique positive solutions to the
state problem. In Section 3, we prove the existence of an optimal con-
trol. In Section 4, necessary conditions for an optimal control are ob-
tained, and in particular the optimality system is deduced. We also
give the results for maximizing the yield with Neumann boundary con-
ditions. In Section 5, we prove the uniqueness of the optimality system.
Note that in Leung [1995], Cañada et al. [1998], and Montero [2000],
there were no numerical examples to illustrate the results. In Section
6, numerical examples are given to solve the nonlinear optimality sys-
tem for dimensions 1 and 2. In Section 7, we give the corresponding
theoretical results for J 2(h), and it turns out the optimal control is
characterized by a variational inequality instead of the usual algebraic
characterization. In Section 7.4, we explain the numerical methods to
solve the variational inequality and then give some numerical examples
in this case. Finally, we give some relevant conclusions.
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2. Existence and uniqueness of a positive solution to the
state equation. We say a function u(x) ∈ H1

0(Ω) is a weak solution
to (1) if∫

Ω
∇u · ∇v dx =

∫
Ω
(ru(1 − u) − h(x)u)v dx, ∀v ∈ H1

0 (Ω).(6)

Using the extension of the maximum principle to weak solutions
(Krylov [1985]), we can show 0 ≤ u(x) ≤ 1.

Clearly u = 0 is a solution for (1), but for a fishery problem we need
to have a unique positive solution under certain conditions.

We present some results from Cañada et al. [1998] to guarantee the
existence and uniqueness of the positive state solution. For a function
q ∈ L∞(Ω), we define σ1(q) to be the principal eigenvalue of the eigen-
value problem

−Δu(x) + q(x)u(x) = σu(x), x ∈ Ω;
u(x) = 0, x ∈ ∂Ω.

(7)

This principal eigenvalue can be expressed as

σ1(q) = inf
φ∈H 1

0 (Ω )
φ �≡0

∫
Ω
|∇φ|2 dx +

∫
Ω

qφ2 dx∫
Ω

φ2 dx

.(8)

It is known that the algebraic multiplicity of σ1(q) is equal to one and
the associated eigenfunction is positive.

We obtain the following three properties for σ1(q), and we will refer
to them in the following proofs.

Property 1. σ1(q) is increasing with respect to q , that is, if q1 <
q2 , then σ1(q1) < σ1(q2);
Property 2. σ1(q) is continuous with respect to q ∈ L∞(Ω);
Property 3. if σ1(q) > 0, then there exists c > 0, such that

c

∫
Ω
|∇φ|2 dx ≤

∫
Ω
|∇φ|2 dx +

∫
Ω

qφ2 dx.
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Properties 1 and 2 follow from the definition of σ1(q). We present a
proof of Property 3: If 0 < c ≤ σ1 (q)

σ1 (q)+||q ||∞ , that is, c||q||∞ ≤ (1 −
c)σ1(q), then by the definition of σ1(q), we have

(1 − c)
∫

Ω
(|∇φ|2 + qφ2) dx ≥ (1 − c)σ1(q)

∫
Ω

φ2 dx

≥ c||q||∞
∫

Ω
φ2 dx ≥ −c

∫
Ω

qφ2 dx.

By rearranging the above inequality, we have Property 3.

Note if there exist two positive constants M and μ, such that

||q||∞ ≤ M, σ1(q) ≥ μ,

then the constant c may be chosen independent of q . We can take
c = μ

μ+M , because

μ

μ + M
≤ σ1(q)

σ1(q) + ||q||∞
.

By Berestycki and Lions [1980] and Montero [2000], the nontrivial
solution u to equation (1) is unique and strictly positive if and only if
σ1(−r + h) < 0 and u ≡ 0 if and only if σ1(−r + h) ≥ 0.

We take u = u(h) to be the maximum nonnegative solution of (1).
If for some h ∈ U 1(or U 2), σ1(−r + h) < 0, then u = u(h) > 0 in Ω.
If σ1(−r + h) ≥ 0 for some h ∈ U 1(or U 2), then u = u(h) ≡ 0. Here,
we explicitly show the dependence of the states on the control, and we
note that space is still the underlying variable.

Note that Cantrell and Cosner [2003] and Shi and Shivaji [2005] stud-
ied a general class of semilinear equations and found that the existence
and uniqueness of the positive solutions depend on the principal eigen-
value of the corresponding linear operator.

3. Existence of an optimal control for J 1. First, we prove the
existence of an optimal control for our first objective functional.

Theorem 3.1. There exists an optimal control h∗ ∈ U 1 maximizing
the objective functional J 1(h).
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Proof . Because 0 ≤ h(x) ≤ hmax and 0 ≤ u(x) ≤ 1, we have J 1(h) ≤
(hmax)(meas(Ω)), and we can choose a maximizing sequence {hn} ⊂
U 1 , s.t.

lim
n→∞

J1(hn ) = sup
h∈U1

J1(h).(9)

First, we get an a priori estimate for u. Let un = u(hn ), and take v =
un as the test function in (6), we have

∫
Ω
∇un · ∇un dx =

∫
Ω
(run (1 − un ) − hnun )un dx

≤
∫

Ω
r(un )2 dx ≤ C0 ,

(10)

because 0 < un ≤ 1 and hn ∈ U 1 , which gives

||un ||H 1
0 (Ω) ≤ C1 .(11)

Then there exists u∗ in H1
0(Ω) such that on a subsequence, un ⇀ u∗

weakly in H1
0(Ω). Because H1

0(Ω) ⊂ ⊂ L2(Ω), we obtain

un −→ u∗ strongly in L2(Ω),

and there is a subsequence {unk
}, s.t. {unk

} converges to u∗ almost
uniformly (Friedman [1982]), so 0 ≤ u∗ ≤ 1 a.e.

Notice the sequence {hn} in U 1 is uniformly bounded in L2(Ω), so
on an appropriate subsequence,

hn ⇀ h∗ weakly in L2(Ω).

Next we need to prove u∗ = u(h∗). The weak solution formulation
(6) for un gives

∫
Ω
∇un · ∇v dx =

∫
Ω
(run (1 − un ) − hnun )v dx, ∀v ∈ H1

0 (Ω).(12)

Because un → u∗ strongly in L2(Ω), which implies
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∫
Ω
|(un − u∗)v| dx ≤

(∫
Ω
(un − u∗)2 dx

∫
Ω

v2 dx

) 1
2

−→ 0,(13)

and then

∣∣∣∣∣
∫

Ω
(un )2v − (u∗)2v dx

∣∣∣∣∣ ≤
∫

Ω
| un + u∗ || (un − u∗)v | dx

≤ 2
∫

Ω
| (un − u∗)v | dx −→ 0,

(14)

because 0 ≤ un , u∗ ≤ 1 and by (13). Then the control are estimated:

∣∣∣∣∣
∫

Ω
(hnun − h∗u∗)v dx

∣∣∣∣∣
≤
∣∣∣∣∣
∫

Ω
hn (un − u∗)v dx

∣∣∣∣∣+
∣∣∣∣∣
∫

Ω
(hn − h∗)u∗v dx

∣∣∣∣∣
≤
∫

Ω
hmax | (un − u∗)v dx | +

∣∣∣∣∣
∫

Ω
(hn − h∗)u∗v dx

∣∣∣∣∣ −→ 0,

(15)

because hn ∈ U 1 , and using (13) and weak convergence of hn in L2(Ω)
with u∗ v ∈ L2(Ω).

Finally, we obtain

∫
Ω
(∇un · ∇v −∇u∗ · ∇v)dx =

∫
Ω
∇(un − u∗) · ∇v dx −→ 0,(16)

because un ⇀ u∗ weakly in H1
0(Ω) implies ∇un ⇀ ∇u∗ weakly in

L2(Ω). Then passing to the limit in (12), we have u∗ = u(h∗).

Also we need to verify h∗ is an optimal control, that is,

J1(h∗) ≥ sup
h∈U1

J1(h).(17)
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Because

sup
h∈U1

J1(h) = lim
n→∞

J1(hn ) = lim
n→∞

∫
Ω

hnun − (B1 + B2h
n )hn dx

≤
∫

Ω
h∗u∗ dx − limn→∞

∫
Ω
(B1 + B2h

n )hn dx

≤
∫

Ω
h∗u∗ dx −

∫
Ω
(B1 + B2h

∗)h∗ dx = J1(h∗),

(18)

where we used (15) and lower semicontinuity of the cost functional with
respect to weak L2 convergence, we have verified (17).

4. Derivation of the optimality system for J 1. In order to
characterize the optimal control, we need to differentiate the objective
functional with respect to the control h. Because u = u(h) is involved
in J 1(h) (and J 2(h)), we first must prove appropriate differentiability
of the mapping h −→ u(h), whose derivative is called the sensitivity .

Lemma 4.1 (Sensitivity). Assume for h0 ∈ U 1 , σ1(−r + h0) <
0, the mapping h ∈ U1 −→ u(h) is differentiable at h 0 in the following
sense: there exists ψ ∈ H1

0(Ω), such that

u(h0 + lε) − u(h0)
ε

⇀ ψ weakly in H1
0 (Ω) as ε → 0,

where h0 + εl ∈ U 1 , l ∈ L∞(Ω). And the sensitivity ψ = ψ(h0 ; l)
satisfies {

−Δψ = rψ(1 − 2u) − h0(x)ψ − lu, x ∈ Ω,

ψ = 0, x ∈ ∂Ω.
(19)

Proof . Because σ1(−r + h0) < 0, we have u(h0) > 0 on Ω. Define
uε = u(h0 + lε), using (1), we have

−Δuε = ruε(1 − uε) − (h0(x) + εl)uε,(20)

then subtracting (1) from (20) and divide by ε, we have
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−Δ
uε − u

ε
= r

uε − u

ε
− r

(uε)2 − u2

ε
− h0(x)

uε − u

ε
− luε .(21)

Multiplying both sides by uε−u
ε and integrating in Ω, we obtain

∫
Ω

∣∣∣∣∣∇uε − u

ε

∣∣∣∣∣
2

dx =
∫

Ω
r

(
uε − u

ε

)2

dx − r

∫
Ω
(uε + u)

(
uε − u

ε

)2

dx

−
∫

Ω
h0(x)

(
uε − u

ε

)2

dx −
∫

Ω
luε uε − u

ε
dx.

(22)

that is,∫
Ω

∣∣∣∣∣∇uε − u

ε

∣∣∣∣∣
2

dx +
∫

Ω
(−r + h0 + r(uε + u))

(
uε − u

ε

)2

dx

= −
∫

Ω
luε uε − u

ε
dx.

Using (1), that is, −Δu + (−r + h0 + ru)u = 0, we have σ1(−r + h0 +
ru) = 0. Let ε1 sufficiently small, such that for |ε| < ε1 , by the conti-
nuity of σ1(q), the assumption σ1(−r + h0) < 0 implies σ1(−r + h0 +
ε1 ||l||∞) < 0. Thus, there exists uε1 > 0, with uε1 = u(h0 + ε1 ||l||∞),

σ1(−r + h0 + r(uε1 + u)) > σ1(−r + h0 + ru) = 0.

Because u is decreasing with respect to h, we have uε ≥ uε1 . By the
monotonicity of σ1(q), we obtain

σ1(−r + h0 + r(uε + u)) ≥ σ1(−r + h0 + r(uε1 + u)) > 0.

Using property 3 of σ1(q), there exists c1 > 0, such that

c1

∫
Ω

∣∣∣∣∣∇uε − u

ε

∣∣∣∣∣
2

dx ≤
∫

Ω

∣∣∣∣∣∇uε − u

ε

∣∣∣∣∣
2

dx

+
∫

Ω
(−r + h0 + r(uε + u))

(
uε − u

ε

)2

dx

(23)
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= −
∫

Ω
luε uε − u

ε
dx

≤
(∫

Ω
l2 dx

) 1
2
(∫

Ω

(
uε − u

ε

)2
) 1

2

≤
(∫

Ω
l2 dx

) 1
2

⎛
⎝CP

∫
Ω

∣∣∣∣∣∇uε − u

ε

∣∣∣∣∣
2
⎞
⎠

1
2

≤ C1

⎛
⎝∫

Ω

∣∣∣∣∣∇uε − u

ε

∣∣∣∣∣
2
⎞
⎠

1
2

,

where C1 = ||l||∞|Ω| 1
2 C

1
2
P and CP is the constant from Poincaré’s in-

equality.

Then our bound ∣∣∣∣∣
∣∣∣∣∣u

ε − u

ε

∣∣∣∣∣
∣∣∣∣∣
H 1

0 (Ω)

≤ C2 ,(24)

implies there exists ψ ∈ H1
0(Ω) with the desired weak convergence of

the quotients to ψ.

To get the equation for ψ, we multiply φ ∈ H1
0(Ω) on both sides of

(21) and integrate in Ω,∫
Ω
−Δ

uε − u

ε
φ dx =

∫
Ω

r
uε − u

ε
φ dx −

∫
Ω

r
uε − u

ε
(uε + u)φ dx

−
∫

Ω
h0(x)

uε − u

ε
φ dx −

∫
Ω

luεφ dx.

(25)

Because uε−u
ε ⇀ ψ weakly in H1

0(Ω), 0 ≤ h0(x) ≤ hmax, 0 ≤ uε ,u ≤ 1,
and uε → u strongly in L2(Ω) as ε → 0, we obtain∫

Ω
−Δψφ dx =

∫
Ω

r(1 − 2u)ψφ dx

−
∫

Ω
h0(x)ψφ dx −

∫
Ω

luφ dx,∀φ ∈ H1
0 (Ω),

(26)

that is, ψ satisfies (19).
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Remark. Note that the sensitivity result depends only on the PDE
and the boundary condition and not on the objective functional. Hence,
Lemma 4.1 can be applied in both control problems.

Now we are ready to characterize the optimal control, by deriving
the optimality system through differentiating J 1(h) with respect to h
at an optimal control.

Theorem 4.2. Assume B2 > 0, and for an optimal control h in
U 1 , σ1(−r + h) < 0, then there exists a solution p in H2(Ω)∩ H1

0(Ω)
to the adjoint problem

{
−Δp − r(1 − 2u)p + hp = h, x ∈ Ω,

p = 0, x ∈ ∂Ω.
(27)

Furthermore h(x ) satisfies

h(x) = min
{

max
{

0,
u − pu − B1

2B2

}
, hmax

}
.

Proof . Suppose h(x ) is an optimal control. Let l ∈ L∞(Ω) such that
h + εl ∈ U 1 for small ε > 0. The derivative of J 1(h) with respect to h
in the direction of l satisfies

0 ≥ lim
ε→0+

J1(h + εl) − J1(h)
ε

= lim
ε→0+

1
ε

[∫
Ω
(h + εl)uε dx −

∫
Ω
(B1(h + εl) + B2(h + εl)2) dx

−
∫

Ω
hu dx +

∫
Ω
(B1h + B2h

2) dx

]

= lim
ε→0+

∫
Ω
(h

uε − u

ε
+ luε) dx −

∫
Ω
(B1 l + B2(2hl + εl2)) dx

=
∫

Ω
(hψ + lu) dx −

∫
Ω
(B1 l + 2B2hl) dx.

(28)
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We used ideas from Cantrell and Cosner [2003] to show 0 is not an
eigenvalue of Lψ = σψ, where Lv = −Δ v + (−r + h(x) + 2ru) v,
from the Fredholm alternative, Lv − 0 · v = h(x) has a unique solution
in H2(Ω) ∩ H1

0(Ω) for h(x) ∈ L2(Ω̄). Then choosing v(x) = p(x), we
have the existence and uniqueness of the adjoint.

The state equation (1) can be rewritten as

{
−Δu + (−r + h)u + ru2 = 0, x ∈ Ω,

u = 0, x ∈ ∂Ω.
(29)

Because σ1(−r + h) < 0, we have u > 0, and then ψ = u is a solution
to

{
−Δψ + (−r + h + ru)ψ = σψ, x ∈ Ω,

ψ = 0, x ∈ ∂Ω,
(30)

with σ = 0. So σ = 0 is an eigenvalue of (30) and because u > 0 in Ω, it
must be the principal eigenvalue for (30), denoted by σ1(−r + h + ru).
Notice the problem

{
−Δψ + (−r + h + 2ru)ψ = σψ, x ∈ Ω,

ψ = 0, x ∈ ∂Ω,
(31)

has a principal eigenvalue σ1(−r + h + 2ru) with

σ1(−r + h + 2ru) > σ1(−r + h + ru) = 0,

because −r + h + 2ru > −r + h + ru and using the monotonocity of
σ1(q). Because σ1(−r + h + 2ru) is the smallest eigenvalue of (31), 0
cannot be an eigenvalue for (31); hence 0 is not an eigenvalue of L. This
completes the existence and uniqueness of the solution of the adjoint
problem.

Let p be the solution to adjoint problem (27), then from (28), we
have
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0 ≥
∫

Ω
[ψ(−Δp − r(1 − 2u)p + hp) + lu] dx

−
∫

Ω
(B1 l + 2B2hl) dx

=
∫

Ω
[∇p∇ψ + p(−r(1 − 2u)ψ + hψ) + lu] dx

−
∫

Ω
(B1 l + 2B2hl) dx.

(32)

Using the sensitivity PDE (19) (with h as h 0), we obtain

0 ≥
∫

Ω
(−p lu + lu) dx −

∫
Ω
(B1 l + 2B2hl) dx

=
∫

Ω
l(−p u + u − B1 − 2B2h) dx.

(33)

Then on the set 0 < h < hmax, we choose variation l with support on
this set and l to be any sign, which gives −pu + u − B1 − 2B2h = 0.
On the set where h = 0, we choose l ≥ 0, which implies −pu + u − B1 −
2B2h ≤ 0. Similarly where h = hmax, we choose l ≤ 0, which implies
−pu + u − B1 − 2B2h ≥ 0. This can be written in the compact form
as

h∗ = min
{

max
{

0,
u − pu − B1

2B2

}
, hmax

}
.(34)

Next, we give the generalization of Neubert’s result (Neubert [2003])
(for maximizing the yield only) to multidimensions.

Theorem 4.3. If B1 = B2 = 0 in J 1(h), then the optimal control
is given by

h(x) =

⎧⎪⎪⎨
⎪⎪⎩

0, if p > 1;
hmax , if p < 1;
r

2
, if p = 1.

(35)
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Proof . The proof in Theorem 4.2 is valid for B2 = 0 except when
we solve for h in (34). In (33), if we set B1 = 0,B2 = 0, inequality (33)
reduces to

0 ≥
∫

Ω
l(1 − p)u dx,

which is a generalization of Neubert’s [2003] case in multidimension.

On the set where p < 1, then variation satisfies l ≤ 0, so conclude
h = hmax . Where p > 1, then variation satisfies l ≥ 0, which gives h =
0. Where p = 1, using adjoint PDE (27), we get u = 1

2 , and then using
state PDE (1), we get h = r

2 . This gives the same result as Neubert’s
[2003] with r = 1.

The problem of maximizing J 1(h) with the state PDE in (1) with
Neumann boundary condition gives a simple optimal control, a singular
case.

Theorem 4.4. If B1 = B2 = 0 in J 1(h), and our state problem is

⎧⎨
⎩
−Δu = ru(1 − u) − h(x)u, x ∈ Ω,

∂u

∂η
= 0, x ∈ ∂Ω,

(36)

then the optimal control and state are

h∗(x) =
1
2
, u∗(x) =

1
2
.

Proof . From the state PDE (1),

J1(h) =
∫

Ω
hu dx =

∫
Ω

Δu + u(1 − u) dx

=
∫

∂Ω

∂u

∂η
dS +

∫
Ω

u(1 − u) dx =
∫

Ω
u(1 − u) dx,

(37)

where we used integration by parts,
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∫
Ω

Δu dx =
∫

Ω
1

n∑
i=1

(
uxi

)
xi

dx =
∫

Ω
0 dx +

∫
∂Ω

∂u

∂η
ds,

and the Neumann boundary condition. The integral is maximized at
u∗ = 1

2 , because u(1 − u) is maximized there. Then using state PDE
(1), we have h∗ = 1

2 .

5. Uniqueness of optimality system I. In the case B2 > 0,
the state equation (1) and the adjoint equation (27) together with the
characterization of the optimal control (34) is called optimality system
I (OS1), which is given by⎧⎪⎪⎪⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎪⎪⎪⎩

−Δu = ru(1 − u) − h(x)u, x ∈ Ω,

u = 0, x ∈ ∂Ω;
−Δp − r(1 − 2u)p + hp = h, x ∈ Ω,

p = 0, x ∈ ∂Ω;

h(x) = min
{

max
{

0,
u − pu − B1

2B2

}
, hmax

}
.

(38)

We know that the solutions of the optimality system exist by
Theorems 3.1 and 4.2. We now prove that the solutions of (OS 1) are
unique, which gives a characterization of the unique optimal control in
terms of the unique solutions of (OS 1).

To prove the uniqueness of the solutions to (OS 1), we need a bound
of the adjoint p in L∞(Ω) depending on B 2 .

Lemma 5.1. For B2 �= 0, given u, p, h solving (38) with u positive
in Ω, for dimension n = 1, 2, 3, the adjoint p satisfies

||p||L∞(Ω) ≤
C8

B2
,(39)

where C 8 doesn’t depend on B2 .

Proof . Because u > 0, using the monotonicity of σ1(q), we have σ1
(−r + h + 2ru) > σ1(−r + h + ru) = 0. Then by property 3 of σ1(q)
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and using weak formulation of adjoint equation in (38), there exists
c2 > 0, such that

c2

∫
Ω
|∇p|2 dx ≤

∫
Ω
|∇p|2 dx

+
∫

Ω
(−r + h + 2ru)p2 dx =

∫
Ω

hp dx

≤ 1
4ε

∫
Ω

h2 dx + ε

∫
Ω

p2 dx

≤ 1
4ε

h2
max |Ω| + εCP

∫
Ω
|∇p|2 dx,

(40)

where we use 0 ≤ h ≤ hmax, and CP is the constant from Poincaré’s
inequality. If we choose ε = c2

2CP
, we have

∫
Ω
|∇p|2 dx ≤ C1 ,(41)

where C1 = CP
c2
2

h2
max |Ω|.

By standard elliptic regularity (Chapter 6, Evans [1998]) and using
the adjoint equation in (38),

||p||H 2 (Ω) ≤ C4 ||(r − h − 2ru)p + h||L2 (Ω) ≤ C5 ,(42)

where C 4 only depends on Ω and dimension n, and C 5 only depends
on r, CP , c2 , Ω, n. Using the characterization of an optimal control h
in (38), estimate (41) together with Poincaré’s inequality, we have

||h||L2 (Ω) ≤
∣∣∣∣∣
∣∣∣∣∣u − pu − B1

B2

∣∣∣∣∣
∣∣∣∣∣
L2 (Ω)

≤ C6

B2
,(43)

where C 6 only depends on Ω,n, r, CP , c2 . Go back to (40), refine esti-
mate of p by (43), we have

∫
Ω

p2 dx ≤ CP

∫
Ω
|∇p|2 dx ≤ C7CP

B2
2

,(44)
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where C7 = CP C 2
6

c2
2

. From Li and Yong [1995], for n = 1, 2, 3, H2(Ω) ⊂⊂
C(Ω̄), we have

||p||L∞(Ω) ≤ C0 ||p||H 2 (Ω) ,(45)

where C 0 only depends on Ω and dimension n. Using a refinement of
(42) with B 2 dependence, (44) and (43), we obtain

||p||L∞(Ω) ≤ C̄0(||p||L2 (Ω) + ||h||L2 (Ω)) ≤
C8

B2
,(46)

where C 8 doesn’t depend on B 2 and only depends on Ω, n, r, CP , c2 .

Theorem 5.2. For n = 1, 2, 3, if B 2 is sufficiently large, then
solutions of the optimality system I (OS 1) with positive u components
are unique.

Proof . Suppose u, p, h and ū, p̄, h̄ are two solutions of (OS 1). From
(34), using pu − p̄ū = p(u − ū) + (p − p̄)ū we have

|h − h̄| ≤
∣∣∣∣u − pu − B1

2B2
− ū − p̄ū − B1

2B2

∣∣∣∣
≤ 1

2B2
(|(1 − p)(u − ū)| + |p − p̄|) .

(47)

Choosing test functions u − ū in the state PDEs and using hu − h̄ū =
h(u − ū) + (h − h̄)ū, gives∫

Ω
|∇(u − ū)|2 dx −

∫
Ω

r(u − ū)2 dx +
∫

Ω
r(u + ū)(u − ū)2 dx

+
∫

Ω
(u − ū)2h + ū(u − ū)(h − h̄) dx = 0,

(48)

and choosing test functions p − p̄ in the adjoint PDEs and using up −
ūp̄ = (u − ū)p + ū(p − p̄), gives
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∫
Ω
|∇(p − p̄)|2 dx −

∫
Ω

r(p − p̄)2 dx

+ 2r

∫
Ω

[
(u − ū)p(p − p̄) dx + ū(p − p̄)2] dx

+
∫

Ω
(h − h̄)p(p − p̄) + h̄(p − p̄)2 dx

−
∫

Ω
(h − h̄)(p − p̄) dx = 0.

(49)

Adding (48) and (49), the following equation results:

∫
Ω
|∇(u − ū)|2 dx +

∫
Ω

(−r + h + r(u + ū)) (u − ū)2 dx

+
∫

Ω
|∇(p − p̄)|2 dx +

∫
Ω
(−r + h̄ + 2ūr)(p − p̄)2 dx

=
∫

Ω
−ū(u − ū)(h − h̄) dx −

∫
Ω

2r(u − ū)p(p − p̄) dx

−
∫

Ω
(h − h̄)p(p − p̄) dx +

∫
Ω
(h − h̄)(p − p̄) dx.

(50)

Because u, ū > 0, and u, ū satisfy the state equation in (38), we have

σ1(−r + h + r(u + ū)) > σ1(−r + h + ru) = 0,
σ1(−r + h̄ + 2ūr) > σ1(−r + h̄ + rū) = 0.

Using property 3 of σ1(q), (47) and 0 ≤ u, ū ≤ 1, there exists c3 > 0,
such that

c3

(∫
Ω
|∇(u − ū)|2 dx +

∫
Ω
|∇(p − p̄)|2 dx

)

≤
∫

Ω
|∇(u − ū)|2 dx +

∫
Ω

(−r + h + r(u + ū)) (u − ū)2 dx

+
∫

Ω
|∇(p − p̄)|2 dx +

∫
Ω
(−r + h̄ + 2ūr)(p − p̄)2 dx

(51)
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≤
∫

Ω

||1 − p||L∞

2B2
(u − ū)2 dx +

∫
Ω

1
2B2

|(u − ū)(p − p̄)| dx

+ 2r||p||L∞

∫
Ω
|(u − ū)(p − p̄)| dx + (1 + ||p||L∞)

×
(∫

Ω

||1 − p||L∞

2B2
|(u − ū)(p − p̄)| dx +

∫
Ω

1
2B2

(p − p̄)2 dx

)
.

Using the Cauchy–Schwartz inequality, Poincaré’s inequality, and (39),
we have

c3

(∫
Ω
|∇(u − ū)|2 dx +

∫
Ω
|∇(p − p̄)|2 dx

)

≤ C9

B2

∫
Ω

(
|∇(u − ū)|2 + |∇(p − p̄)|2

)
dx.

(52)

If we take B 2 sufficiently large, so that

c3 >
C9

B2
,

we conclude u = ū, p = p̄, h = h̄, that is, we have the uniqueness of
OS 1 , which implies the uniqueness of the optimal control.

6. Numerical examples for J 1. We solve the optimality system
I (38) numerically by the following iteration method, which is imple-
mented using MATLAB:

(i) Initialization: Choose initial guesses for fish density u 0 and har-
vesting h0 .

(ii) Discretization: Use the finite difference method to discretize
state and adjoint equations to nonlinear algebraic systems.

(iii) Iteration: hn is known
(a) Solve discretized PDE of (1) for state u: with the discretized

Laplacian term on the left and the nonlinear terms to the right,
we solve a linear system in which the corresponding matrix is
tridiagonal for 1-D case and block tridiagonal for 2-D case.

(b) Solve discretized PDE of (27) for adjoint p similarly.
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(c) Update the control by entering new fish density and adjoint
values into the characterization of optimal control (34).

(iv) Repeat step 3 if successive iterates are not sufficient close.

We make a few remarks about the algorithm (Lenhart and Workman
[2007]). A central difference scheme is used to discretize the Laplacian
operator. A convex combination between the previous control values
and values given by the current characterization is used in updating h,
which helps to speed up convergence.

Next we give some numerical examples to illustrate the results. For
the 1-D case, the interval length is 5. We vary values for B 1 and B 2 to
see how they affect the corresponding fish density and optimal harvest-
ing. Also, we investigate how the domain size will affect the optimal
benefit (the fish density, optimal harvesting, and J 1 value). We choose
hmax = 0.99 because we don’t want to deplete the fish stock. In Figures
1 and 2, we set r = 1.

First we set B1 = 0.1 and vary B 2 to see how the change in labor cost
will affect the fish density and harvesting strategy. Choosing B2 = 0.5,
1.25, 2.5, 5, 10, in Figure 1, we see that when labor cost increases, that
is, B 2 increases, we harvest less and the corresponding fish density is
increasing. In this scenario, we harvest more on the center of the habitat
where the fish density is high. Notice that there is no harvesting in a
small neighborhood about the boundary.

FIGURE 1. Fish density and optimal harvesting: B 1 = 0.1, B 2 = 0.5, 1.25,
2.5, 5, 10.
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FIGURE 2. Fish density and optimal harvesting: B 1 = 0, B 2 = 0.1, 0.05, 0.01.

Then we set B1 = 0, but choose very small values for B 2 so that we
can compare to Neubert’s results (Neubert [2003]). In Figure 2, we let
B2 = 0.1, 0.05, 0.01 and see the tendency toward a reserve in the middle
of the region, and this result is similar to Neubert’s result (in Neubert
[2003]) when the length parameter l = 5. Note that the harvesting
occurs closer to the edge of the habitat but tapers off right at the edge.
In this case, the cost of control is very low, which gives different results
from the case when B 2 is larger.

Next we illustrate the case of two dimensional space. In Figure 3, we
set B1 = 0 and choose B2 = 0.03. We can observe a similar situation
as in the 1-D case in that there tends to be a reserve in the center of
the region.

We take r = 5 in Figures 4–6. In Figures 4 and 5, we take the domain
to be (0, 2.5) × (0, 2.5). In Figure 6, the domain is (0, 3) × (0, 3).

We set B1 = 0 and B2 = 1 in Figure 4, then we keep B2 = 1 and
take B1 = 0.1 in Figure 5. Comparing these two figures, we can see
larger B 1 causes the the optimal harvesting to decrease, which can be
seen from (34). When the fish density is too low in a neighborhood of
the boundary, (34) indicates the harvesting to be 0, which can also be
seen from Figure 1(b).

In Figure 6, we still have B1 = 0, B2 = 1 but a bigger domain size.
Comparing with Figure 4, as domain size increases, the fish density
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FIGURE 3. Fish density and optimal harvesting: B 1 = 0, B 2 = 0.03, r = 5,
L = 2.5.

FIGURE 4. Fish density and optimal harvesting: B 1 = 0, B 2 = 1, r = 5, L = 2.5.

and the optimal harvesting both increase. We calculated the J 1 value
in each case, giving 1.78 and 6.22 for the smaller and the larger do-
main respectively. Montero [2001] studied a control problem of a bi-
ological growing species in a bounded domain, modeled by a logistic
elliptic equation with Dirichlet boundary condition and a payoff-cost
functional of quadratic type. He showed mathematically the optimal
benefit increases when the domain increases (in case B1 = 0), and here
we verified this property numerically.

7. Second objective functional. In this section, we will deal
with the second objective functional (5). We will show the existence
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FIGURE 5. Fish density and optimal harvesting: B 1 = 0.1, B 2 = 1, r = 5,
L = 2.5.

FIGURE 6. Fish density and optimal harvesting: B 1 = 0, B 2 = 1, r = 5, L = 3.

of an optimal control, derive the characterization of an optimal con-
trol, and prove the uniqueness. Finally we will give some numerical
examples.

7.1 Existence of an optimal control for J 2

Theorem 7.1. There exists an optimal control h∗ ∈ U 2 maximizing
the objective functional J 2(h).

Proof . The proof is similar to Theorem 3.1, using a maximizing
sequence argument. But in addition to an H1

0 a priori estimate for u,
we also need an H1

0 estimate for h ∈ U 2 .
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Because {J 2(h) |h ∈ U 2} is bounded above by hmax |Ω|, there exists
a maximizing sequence {hn} such that

lim
n→∞

J2(hn ) = sup
h∈U2

J2(h),

where

J2(hn ) =
∫

Ω
hnun − A|∇hn |2 dx.

Notice the L∞ bounds on the states and the controls give the bounds,∫
Ω hnundx so

∫
Ω
|∇hn |2 dx ≤ C1 ,

which implies the H1
0 boundedness of the hn sequence.

Thus, there exist h∗, u∗ ∈ H1
0(Ω), such that on a subsequent un ⇀ u∗

and hn ⇀ h∗, both weakly in H1
0(Ω), and the limits satisfy u∗ = u(h∗).

There is a slight change when we need to verify h∗ is an optimal control,
that is,

J2(h∗) ≥ sup
h∈U2

J2(h).(53)

sup
h∈U2

J2(h) = lim
n→∞

J2(hn )

= lim
n→∞

∫
Ω

hnun − A|∇hn |2 dx

≤
∫

Ω
h∗u∗ dx − limn→∞

∫
Ω

A|∇hn |2 dx

≤
∫

Ω
h∗u∗ dx −

∫
Ω

A|∇h∗|2 dx = J2(h∗).

(54)

where we used (5) and lower semicontinuity of ∇ hn in L2 norm with
respect to weak convergence.

7.2 Derivation of optimality system for J 2. We provide a
similar analysis for the sensitivity and adjoint equation. Because the
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sensitivity equation does not depend on the form of the objective func-
tional, Lemma 4.1 is valid for this problem. The nonhomogeneous term
of the adjoint only comes from the dependence of the objective func-
tional on the state, which is the same in J 1 and J 2 . But we have a
different characterization for an optimal control h ∈ U 2 .

When we differentiate the map, u → J2(u), the gradient of the con-
trol will be in the resulting inequality, and thus we do not just get a
characterization of u with bounds. We obtain a characterization of u
and its derivatives with the bounds on the controls taken into account.
Thus our characterization will be a variational inequality.

To clarify the characterization of our optimal control in U 2 , we
make the following definition involving a variational inequality with
upper and lower obstacles (Chipot [1984], Kinderlehrer and Stampac-
chia [2000]).

Definition 7.2. A function h ∈ U 2 is a weak solution of the fol-
lowing variational inequality (VI)

min{max(pu − u − 2AΔh, h − hmax), h − 0} = 0,

if for all v0 ∈ U 2 ,∫
Ω

2A∇h · ∇(v0 − h) + (pu − u)(v0 − h) dx ≥ 0.(55)

Now we derive the characterization of an optimal control using this
VI.

Theorem 7.3. For an optimal control h in U 2 , σ1(−r + h) < 0,
there exists a solution p in H2(Ω) ∩ H1

0(Ω) to the adjoint problem{
−Δp − r(1 − 2u)p + hp = h, x ∈ Ω,

p = 0, x ∈ ∂Ω,
(56)

Furthermore h(x ) satisfies the following variational inequality (VI)

min{max(pu − u − 2AΔh, h − hmax), h − 0} = 0.(57)
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Proof . Suppose h(x ) is an optimal control. Let l ∈ H1
0(Ω) such that

h + εl ∈ U 2 for small ε > 0. The derivative of J 2(h) with respect to h
in the direction of l satisfies

0 ≥ lim
ε→0+

J2(h + εl) − J2(h)
ε

= lim
ε→0+

1
ε

[∫
Ω
(h + εl)uε dx − A

∫
Ω
|∇(h + εl)|2 dx

−
(∫

Ω
hu dx −

∫
Ω

A|∇h|2 dx

)]

= lim
ε→0+

∫
Ω

(
h

uε − u

ε
+ luε

)
dx − A

∫
Ω

(
2∇h · ∇l + ε|∇l|2

)
dx

=
∫

Ω
(hψ + lu) dx − 2A

∫
Ω
∇h · ∇l dx,

(58)

where ψ is the sensitivity from Lemma 4.1.

Using similar arguments as Theorem 4.2, we have the existence and
uniqueness of the solution of the adjoint problem. Let p in H2(Ω)∩
H1

0(Ω) be the solution to adjoint problem (56), then we have

0 ≥
∫

Ω
[ψ (−Δp − r(1 − 2u)p + hp) + lu] dx − 2A

∫
Ω
∇h · ∇l dx

=
∫

Ω
[∇p∇ψ + p (−r(1 − 2u)ψ + hψ) + lu] dx − 2A

∫
Ω
∇h · ∇l dx.

(59)

Using the sensitivity PDE (19) (with h as h 0), our inequality becomes

0 ≥
∫

Ω
(−plu + lu) dx − 2A

∫
Ω
∇h · ∇l dx.(60)

On the set where h = 0, we choose variation l with support on this
set and l ≥ 0, which implies that pu − u − 2AΔh ≥ 0 in an appropriate
weak H 1 sense. Where 0 < h < hmax, we can take l to have arbitrary
sign, that is, pu − u − 2AΔh = 0 a.e. Where h = hmax, the variation
l ≤ 0 implies pu − u − 2AΔh ≤ 0.
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The characterization of h can be written in the compact form as

min{max(pu − u − 2AΔh, h − hmax), h − 0} = 0,(61)

which is interpreted as the weak solution to the VI given in Definition
(54).

The state equation (1), adjoint equation (56) together with the char-
acterization of the optimal control (57) is called optimality system II
(OS2), which is given by

⎧⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎩

−Δu = ru(1 − u) − h(x)u, x ∈ Ω,

u = 0, x ∈ ∂Ω;
−Δp − r(1 − 2u)p + hp = h, x ∈ Ω,

p = 0, x ∈ ∂Ω;
min{max(pu − u − 2AΔh, h − hmax), h − 0} = 0.

(62)

We note that the weak solutions of (OS 2) exist by Theorems 7.1 and
7.3.

7.3 Uniqueness of optimality system for J 2. The adjoint
equation (56) is the same as (27), so p is L∞ bounded. Due to VI
characterization of an optimal control, the estimate of the L∞ norm of
p in terms of A is more delicate than the estimate in Lemma 5.1.

Lemma 7.4. Given u, p, h solving (62) with u positive in Ω, for n =
1, 2, 3, the adjoint p satisfies

||p||L∞(Ω) ≤
C5

A
,(63)

where C 5 doesn’t depend on A.

Proof . For h ∈ U 2 , the RHS of adjoint equation, (r − h − 2ru)p + h,
in (62) is in H1

0(Ω); by a standard elliptic regularity result Evans [1998],
p ∈ H3(Ω). From (41), we have an L2 estimate on p independent of A.
Now we use an L2 estimate on an optimal h to refine our L2 estimate
of p, which will be used to obtain an estimate of ||p||L∞ in terms of A.
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From standard approximation of a variational inequality by a semilin-
ear approximating equation (Bergounioux and Lenhart [2004], Kinder-
lehrer and Stampacchia [2000]), we obtain

2A

∫
Ω
|∇h|2 dx ≤

∫
Ω
(pu − u)h,(64)

which gives

A

∫
Ω
|∇h|2 dx ≤ CP

4A

∫
Ω
(pu − u)2 dx ≤ C

A
,(65)

where C is independent of A because the L∞ norm of u and the L2

norm of p are independent of A. By Poincaré’s inequality,∫
Ω

h2 dx ≤ C1

A2 ,(66)

with C 1 depending on C and CP . We use this L2 estimate of h to
refine the L2 estimate of p. From (40),

c2

∫
Ω
|∇p|2 dx ≤

∫
Ω

hp dx

implies ∫
Ω
|∇p|2 dx ≤ CP C1

c2
2A

2 ,(67)

which gives ∫
Ω

p2 dx ≤ CP

∫
Ω
|∇p|2 dx ≤ C2

A2 ,(68)

where C 2 depends on the constants from (67). Similar to (42), using
the RHS of the adjoint is H 1 and that p and u are L∞ bounded, we
obtain

||p||H 3 (Ω) ≤ C3
(
||p||H 1 (Ω) + ||h||H 1 (Ω)

)
≤ C4

A
.(69)

From the Sobolev embedding theorem (Li and Yong [1995]), for n =
1, 2, 3, H3(Ω) ⊂⊂ C(Ω̄), we have

||p||L∞(Ω) ≤ C6 ||p||H 3 (Ω) ≤
C5

A
.(70)
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Theorem 7.5. If A is sufficiently large, the dimension n = 1, 2,
3, then the solution of the optimality system (OS 2) with positive u
component is unique.

Proof . Suppose u, p, h and ū, p̄, h̄ are two solutions of (OS 2). In
(55), choosing v0 = h̄, we have

∫
Ω

2A∇h · ∇(h̄ − h) + (pu − u)(h̄ − h) dx ≥ 0.(71)

In (55), replacing h by h̄ and choosing v0 = h, similarly gives

∫
Ω

2A∇h̄ · ∇(h − h̄) + (p̄ū − ū)(h − h̄) dx ≥ 0.(72)

Adding (71) and (72) gives

−2A

∫
Ω
|∇(h − h̄)|2 dx +

∫
Ω
(p̄ū − pu + u − ū)(h − h̄) dx ≥ 0,

which rearranges to∫
Ω

2A|∇(h − h̄)|2 + [(p − p̄)ū + p(u − ū)](h − h̄) dx

≤
∫

Ω
(u − ū)(h − h̄) dx.

(73)

Adding (73), (48), and (49), we obtain

∫
Ω
|∇(u − ū)|2 dx +

∫
Ω

(−r + h + r(u + ū)) (u − ū)2 dx

+
∫

Ω
|∇(p − p̄)|2 dx +

∫
Ω
(−r + h̄ + 2ūr)(p − p̄)2 dx

+ 2A
∫

Ω |∇(h − h̄)|2 dx

≤
∫

Ω
−ū(u − ū)(h − h̄) dx −

∫
Ω

2r(u − ū)p(p − p̄) dx

(74)
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−
∫

Ω
(h − h̄)p(p − p̄) dx +

∫
Ω
(h − h̄)(p − p̄) dx

−
∫

Ω
(p − p̄)ū(h − h̄) dx −

∫
Ω

p(u − ū)(h − h̄) dx

+
∫

Ω
(u − ū)(h − h̄) dx.

Because u, ū > 0, and u, ū satisfy state equation in (62), these eigen-
value inequalties result in

σ1(−r + h + r(u + ū)) > σ1(−r + h + ru) = 0,
σ1(−r + h̄ + 2ūr) > σ1(−r + h̄ + rū) = 0.

Using property 3 of σ1(q), 0 ≤ u, ū ≤ 1, and ε−Cauchy inequality, there
exists c3 > 0, such that

c3

(∫
Ω
|∇(u − ū)|2 dx +

∫
Ω
|∇(p − p̄)|2 dx

)
+ 2A

∫
Ω
|∇(h − h̄)|2 dx

≤
∫

Ω
|∇(u − ū)|2 dx +

∫
Ω

(−r + h + r(u + ū)) (u − ū)2 dx

+
∫

Ω
|∇(p − p̄)|2 dx +

∫
Ω
(−r + h̄ + 2ūr)(p − p̄)2 dx

+ 2A

∫
Ω
|∇(h − h̄)|2 dx

≤ 2
∫

Ω

(
ε(u − ū)2 +

1
4ε

(h − h̄)2
)

dx

+ r||p||L∞

∫
Ω

(
(u − ū)2 + (p − p̄)2) dx

+
||p||L∞

2

∫
Ω

(
(h − h̄)2 + (p − p̄)2) dx

+ 2
∫

Ω

(
ε(p − p̄)2 +

1
4ε

(h − h̄)2
)

dx

+
||p||L∞

2

∫
Ω

(
(u − ū)2 + (h − h̄)2) dx.

(75)
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Using (63) and Poincaré’s inequality, the estimates simplify to

c3

(∫
Ω
|∇(u − ū)|2 dx +

∫
Ω
|∇(p − p̄)|2 dx

)
+ 2A

∫
Ω
|∇(h − h̄)|2 dx

≤
(

2ε + r
C5

A
+

C5

2A

)
CP

∫
Ω
|∇(u − ū)|2 dx

+
(

r
C5

A
+

C5

2A
+ 2ε

)
CP

∫
Ω
|∇(p − p̄)|2 dx

+
(

1
ε

+
C5

A

)
CP

∫
Ω
|∇(h − h̄)|2 dx.

(76)

If we choose ε = c3
4CP

and A is sufficiently large, such that

c3 > (2r + 1)
C5CP

A
and 2A >

C5CP

A
+

4C2
P

c3
,

then we have u = ū, p = p̄, h = h̄, that is, we have the uniqueness of
OS 2 , which implies the uniqueness of the optimal control.

7.4 Numerical examples for J 2. We need to solve the optimal-
ity system II (62) numerically. The variational inequality characteriza-
tion of the optimal control is equivalent to the following minimization
problem (Glowinski et al. [1981], Joshi et al. [2005]):

min
0≤h≤hm ax

1
2

∫
Ω

2A|∇h|2 dx −
∫

Ω
(u − pu)h dx, h ∈ H1

0 (Ω).(77)

In the following, we set A1 = 2A and f = u −p u. We solve (62) by
an iterative method that is implemented using MATLAB:

(i) Initialization: Choose initial guesses for fish density u 0 and har-
vest h0 ;

(ii) Iteration: hn is known.
1. Solve the state equation in (62) for u,
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2. Solve the adjoint equation in (62) for p,
3. Update the control by solving the minimization problem (77);

(iii) Repeat step 3 if successive iterates are not sufficiently close.

Steps 1 and 2 are completed as in Section 6. A central difference scheme
is used to discretize the Laplacian operator. A convex combination
between the previous control values and values given by the current
characterization is used in updating h.

To solve the variational inequality in (62), we discretize the energy
functional (77) with the trapezoidal integration rule and use the steep-
est descent method to solve it. Indeed the functional is quadratic and
constraints are bounded constraints. The discretized problem turns out
to be

min
1
2
XT MX − FT X, 0 ≤ Xi ≤ hmax , i = 1, . . . , N,(78)

where X = {h(xi)}N
i=1 is the discretized control function, XT denotes

the transpose of X , and F is the discretized vector for f = u −pu.
Also, M is the discretized 1-D Laplacian matrix:

M =
A1

(Δx)2

⎡
⎢⎢⎢⎢⎢⎢⎣

2 −1 0 · · · · · ·
−1 2 −1 0 · · ·
...

. . . . . . . . .
...

... 0 −1 2 −1
· · · · · · · · · −1 2

⎤
⎥⎥⎥⎥⎥⎥⎦

.(79)

We give numerical examples for 1-D case, the interval length is 5.
In Figure 7, we vary A = 1, 2.5, 5, 10, and set r = 1, hmax =
0.99. We observe that increasing the variation in fishing effort will
reduce optimal harvesting, and the corresponding fish density is
increasing.

In Figure 8, we choose small A = 0.1, 0.05, 0.01, and set r = 1,
hmax = 0.99. We can see similar scenarios as in J 1(h) when B 2 is
small. Again there will be a reserve in the center of the habitat for
optimal harvesting.
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FIGURE 7. Fish density and optimal harvesting: r = 1, A = 1, 2.5, 5, 10.

FIGURE 8. Fish density and optimal harvesting: r = 1, A = 0.1, 0.05, 0.01.

8. Conclusion. We summarize our conclusions:

(i) If we want to maximize yield and minimize cost (J 1), then increas-
ing the cost coefficients, B 1 or B 2 , will decrease optimal harvesting;

(ii) With small B 1 and B 2 , the harvest control is concentrated near
the boundary;

(iii) If we only want to maximize yield, then a reserve is part of the
optimal harvesting strategy;

(iv) The problem of maximizing yield only (J 1) with Neumann bound-
ary condition gives a simple optimal control, a singular case;
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(v) For J 1 , the optimal benefit increases when domain size increases;

(vi) If we want to maximize yield and minimize variation in fishing
effort, then increasing the variation coefficient A will reduce optimal
harvesting.

Our results also illustrate how to incorporate “low variation” together
with a goal of maximizing the yield. As the cost of implementing the
control, we used an H 1 norm to minimize the variation in the fishing
effort. This type of objective functional and control set leads to a vari-
ational inequality as the control characterization instead of the usual
algebraic characterization. In both cases we completely characterized
the optimal control in terms of the optimality system and implemented
an iterative numerical scheme to illustrate the optimal harvesting
strategy.

The time dependent problem can be tackled in the future and in that
case the nonuniqueness of the state solution is not an issue.
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