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OPTIMAL CONTROL APPLIED TO NATIVE-INVASIVE
SPECIES COMPETITION VIA A PDE MODEL

WANDI DING, VOLODYMYR HRYNKIV, XIAOYU MU

Abstract. We consider an optimal control problem of a system of parabolic
partial differential equations modelling the competition between an invasive
and a native species. The motivating example is cottonwood-salt cedar com-
petition, where the effect of disturbance in the system (such as flooding) is
taken to be a control variable. Flooding being detrimental at low and high
levels, and advantageous at medium levels led us to consider the quadratic
growth function of the control. The objective is to maximize the native species
and minimize the invasive species while minimizing the cost of implementing
the control. An existence result for an optimal control is given. Numerical
examples are presented to illustrate the results.

1. Introduction

The problem of biological invasion as well as the interaction between the inva-
sive and native species has drawn a great deal of attention from both biologists and
mathematicians. The invasion of natural ecosystems by exotic species is an impor-
tant part of global environmental change and poses a major threat to biodiversity
[19]. In this context, understanding the underlying dynamics between all elements
of the ecosystem plays an important role in eradication and control of the invasive
species.

In this paper we consider an optimal control problem for a system of parabolic
partial differential equations (PDEs) modelling the competition between an invasive
and a native species. As a motivating example, we take cottonwood - salt cedar
competition, where the effect of disturbance in the system (such as flooding) is
taken to be a control.

Very few mathematical models have been applied to the cottonwood - salt cedar
competition. We would like to point out the ordinary differential equations (ODEs)
model for the cottonwood - salt cedar competition in [9] and the use of the optimal
control approach there to find the optimal flooding pattern. A new control analysis
result was developed there for the existence of an optimal control in the case of
quadratic functions of the control appearing in both ODEs, under a restriction
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on the coefficients of the quadratics. A more detailed biological background on
cottonwood - salt cedar competition and its management can be found in [9].

To understand the impact of habitat heterogeneity and other spatial features
on the management of invasive-native species, we consider a model which includes
explicit representation of space. The competition model as well as an optimal
control problem considered in this paper are extensions of those in [9] in that
respect that now they include space variable hence leading to a system of PDEs.
PDEs are one of the standard modelling frameworks to account for spatial effects
in ecological systems [4]. Optimal control of PDEs involves deriving an optimal
spatial and temporal strategy, and the corresponding techniques are just beginning
to be applied to natural resource problems with appropriate numerical algorithms
for specific scenarios [3, 5, 8, 18, 11]. The theoretical foundation of optimal control
of models with underlying dynamics given by PDEs was developed by Lions [17]
whereas to derive optimal control solutions for problems in which the state variable
dynamics is governed by ODEs one needs to use Pontryagin’s Maximum Principle
[23]. Even though there is no full generalization of Pontryagin’s Maximum Principle
to partial differential equations, the control theory and corresponding analysis for
many special cases of PDEs have been developed [1, 2, 7, 10, 12, 13, 14, 16].

In this paper we consider a model with diffusive and convective terms since
many plants rely on animals/insects/humans and wind as their dispersal agents. A
more detailed justification as well as description of models that account for different
dispersal mechanisms for plants can be found in [15, 20, 21, 22, 25] and references
therein.

The paper is organized as follows: in section 2, we introduce our system of
partial differential equations and set up the optimal control problem. In section 3
we prove the existence and uniqueness of solution to the state system. In section 4,
we present the existence of an optimal control in the case of quadratic functions of
the control appearing in both PDEs. In sections 5 and 6 we establish the adjoint
system and characterize the optimal control. Section 7 deals with the uniqueness
of the optimal control. Finally, in section 8 we give some numerical examples to
illustrate the results.

2. The model

The state variables N1(x, t) and N2(x, t) represent the population densities (ex-
pressed as seedlings per unit of area) of a native and an invasive species, respectively.
Define Q = Ω × (0, T ), where the domain Ω ∈ Rn is bounded and smooth and T
denotes time. Let the PDE operators Lk, k = 1, 2 be

LkNk =
n∑

i,j=1

(
dk

ij(x, t)(Nk)xi

)
xj

−
n∑

i=1

rk
i (x, t)(Nk)xi ; k = 1, 2. (2.1)

The general model for the population dynamics is given by

(N1)t = L1N1 +
(
θ1(t, u(x, t))− a11N1

)
N1 − a12N1N2,

(N2)t = L2N2 +
(
θ2(t, u(x, t))− a22N2

)
N2 − a21N1N2, in Q.

(2.2)

The diffusion coefficients are dk
ij(x, t), i, j = 1, . . . , n, k = 1, 2, the convective

coefficients are rk
i (x, t), i = 1, . . . , n, k = 1, 2, and the interaction coefficients are

aij ≥ 0, i, j = 1, 2, indicating how species j affects species i.
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The quadratic functions

θi(t, u(x, t)) =
(
aiu

2(x, t) + biu(x, t)
)
χΓ + ci, i = 1, 2, (2.3)

are the intrinsic growth rates, with constants ai, bi, ci, (i = 1, 2) and the effect
of disturbance in the system (such as flooding) is modelled by a control variable
u(x, t). Here χΓ is the characteristic function of the set Γ, which is given by

Γ = ∪T
i=1 [σi, τi],

with the intervals [σi, τi] being in the i-th year. Thus, on the set (0, T ) \ Γ, the
control does not appear in the state system, which amounts to saying that the
control does not apply during those time intervals. With our motivating example
in mind, this means that only flooding during the spring thaw when cottonwoods
release their seeds is allowed (see [9]). With flooding being detrimental at low and
high levels and being advantageous at medium levels, we consider quadratic growth
functions of the control.

The control set is

U = {u ∈ L∞(Ω× Γ) : 0 ≤ u(x, t) ≤M}, (2.4)

where the constant M > 0.
The growth rate parameters ai, bi, and ci, are chosen to fit a specific scenario. In

the cottonwood - salt cedar situation, the parameters are chosen so that with little
or no flooding the salt cedar population N2(x, t) has a higher growth rate than the
cottonwood population N1(x, t) (see [9]).

The initial and boundary conditions are:

N1(x, 0) = N10(x), N2(x, 0) = N20(x), x ∈ Ω,

N1(x, t) = N2(x, t) = 0, (x, t) ∈ ∂Ω× (0, T ),
(2.5)

where the initial populations N10(x), N20(x) are given.
The goal is to maximize

J(u) =
∫

Ω

(
AN1(x, T )−BN2(x, T )

)
dx−

∫∫
Ω×Γ

(
B1u(x, t)+B2u

2(x, t)
)
dx dt, (2.6)

where the constants A,B ≥ 0, the cost coefficients are B1, B2 ≥ 0. This means
we want to maximize the native population N1(x, t) and minimize the invasive
population N2(x, t) at the final time T , while minimizing the cost of applying
the control. The costs can include the actual financial impact to carry out the
management plan but also may consider the negative impact on the environment
or economic development.

3. Existence of the state system

The following assumptions are used this article:

(A1) Ω is a smooth bounded domain in Rn,
(A2) N10(x), N20(x) ∈ L∞(Ω) and N10(x), N20(x) ≥ 0 on Ω,
(A3) rk

i ∈ C1(Q̄) and dk
ij ∈ L∞(Q), dk

ij = dk
ji, for i, j = 1, . . . , n; k = 1, 2,

(A4)
∑n

i,j=1 d
k
ij(x, t)ξiξj ≥ µ|ξ|2, for k = 1, 2, µ > 0, for all (x, t) ∈ Q, ξ ∈ Rn.

(A5) The underlying state space for system (2.2) is V := L2(0, T ;H1
0 (Ω)).
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We define the following bilinear form for v, ψ ∈ V and a.e. 0 ≤ t ≤ T ,

Bk[v, ψ; t] =
∫

Ω

n∑
i,j=1

dk
ij(x, t)vxiψxj −

n∑
i=1

(rk
i (x, t)ψ)xiv dx, k = 1, 2. (3.1)

Definition 3.1. A pair of functions u, v ∈ L2(0, T ;H1
0 (Ω)) is a weak solution of

system (2.2) and (2.5) provided that:

(1) ut, vt ∈ L2(0, T ;H−1(Ω)),
(2)∫ T

0

{〈(N1)t, φ1〉+B1[N1, φ1; t]} =
∫

Q

(
(θ1(t, u)− a11N1)N1 − a12N1N2

)
φ1∫ T

0

{〈(N2)t, φ2〉+B2[N2, φ2; t]} =
∫

Q

(
(θ2(t, u)− a22N2)N2 − a21N1N2

)
φ2

(3.2)
for all φ1, φ2 ∈ V , and

(3) N1(x, 0) = N10(x), N2(x, 0) = N20(x).

Here 〈, 〉 denotes the duality between H1
0 (Ω) and H−1(Ω). Also, note that since

N1, N2 ∈ C([0, T ];L2(Ω)) it follows that condition (3) makes sense [6].

Theorem 3.2. Given u ∈ U , there exists a unique (N1, N2) ∈ (V × V ) ∩ L∞(Q)
which is the solution of he system (2.2) and (2.5).

Proof. To obtain the existence of the solution to the system (2.2)-(2.5), we construct
two sequences by means of iteration. To obtain L∞ bounds, we need supersolutions
and subsolutions for the N1, N2 iterates. Let N̄1, N̄2 be the solutions of the problem

(N̄1)t = L1(N̄1) + θ1(t, u(x, t))N̄1, in Q,

(N̄2)t = L2(N̄2) + θ2(t, u(x, t))N̄2,

N̄1(x, 0) = N10(x), N̄2(x, 0) = N20(x), x ∈ Ω,

N̄1(x, t) = N̄2(x, t) = 0, (x, t) ∈ ∂Ω× (0, T ).

(3.3)

By standard maximum principle arguments [6], N̄1, N̄2 are bounded in L∞(Q).
Define N0

1 = N̄1, and N0
2 to be the solution of

(N0
2 )t = L2(N0

2 ) + (θ2(t, u(x, t))− a22N̄2)N0
2 − a21N

0
1N

0
2 in Q, (3.4)

with N0
2 (x, 0) = N20(x), x ∈ Ω, and N0

2 (x, t) = 0, (x, t) ∈ ∂Ω× (0, T ). By the weak
maximum principle 0 ≤ N0

2 (x, t) ≤ N̄2(x, t) on Ω. For k = 1, 2, 3, . . . , we define
Nk

1 , N
k
2 to be the solutions of the following problems, respectively:

(Nk
1 )t − L1N

k
1 +RNk

1 = (θ1(t, u)− a11N
k−1
1 )Nk−1

1 − a12N
k−1
1 Nk−1

2 +RNk−1
1 ,

(Nk
2 )t − L2N

k
2 +RNk

2 = (θ2(t, u)− a22N
k−1
2 )Nk−1

2 − a21N
k−1
1 Nk−1

2 +RNk−1
2 ,

(3.5)
with Nk

1 (x, 0) = N10(x), Nk
2 (x, 0) = N20(x), for x ∈ Ω, and Nk

1 (x, t) = Nk
2 (x, t) =

0, on ∂Ω× (0, T ), and the constant R is chosen to satisfy R ≥ 2a11N̄1 + a12N̄2− θ1
and R ≥ 2a22N̄2 + a21N̄1 − θ2. Let k = 1 in equation (3.5), subtracting equation
(3.5) from (3.3), we have

(N0
1 −N1

1 )t − L1(N0
1 −N1

1 ) +R(N0
1 −N1

1 ) = a11N
0
1N

0
1 + a12N

0
1N

0
2 ≥ 0.
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By comparison results, we have N0
1 ≥ N1

1 . Similarly, let k = 1 in (3.5), subtracting
equation (3.4) and (3.5), we obtain

(N0
2 −N1

2 )t − L2(N0
2 −N1

2 ) +R(N0
2 −N1

2 ) = −a22(N̄2 −N0
2 )N0

2 ≤ 0.

Since N̄2 ≥ N0
2 , then N0

2 ≤ N1
2 . Let k = 1 and k = 2 in (3.5). Then we have

(N1
1 −N2

1 )t − L1(N1
1 −N2

1 ) +R(N1
1 −N2

1 )

= θ1(t, u(x, t))(N0
1 −N1

1 )− a11(N0
1N

0
1 −N1

1N
1
1 )− a12(N0

1N
0
2 −N1

1N
1
2 )

+R(N0
1 −N1

1 )

≥ θ1(t, u(x, t))(N0
1 −N1

1 )− a11(N0
1 −N1

1 )(N0
1 +N1

1 )− a12N
1
2 (N0

1 −N1
1 )

+R(N0
1 −N1

1 )

≥ (N0
1 −N1

1 )
(
θ1(t, u(x, t))− a11(N0

1 +N1
1 )− a12N

1
2 +R

)
≥ 0,

where we used R > 2a11N̄1 + a12N̄2 − θ1, N1
1 ≤ N0

1 and N1
2 ≥ N0

2 . By comparison
results, N1

1 ≥ N2
1 . Similarly, we obtain N1

2 ≤ N2
2 .

By an induction argument coupled with comparison results, we can prove that
there exist Nk

1 , N
k
2 , Ñ1, Ñ2, such that the following monotone pointwise convergence

hold Nk
1 ↘ Ñ1, Nk

2 ↗ Ñ2 in Q, and 0 ≤ Nk
1 ≤ N̄1, 0 ≤ Nk

2 ≤ N̄2 for k = 1, 2, . . . .
From the boundedness of Nk

1 and Nk
2 in V and (3.5) (see similar arguments in

[13]), we obtain that ‖(N1)k
t ‖, ‖(N2)k

t ‖ are bounded in L2(0, T ;H−1(Ω)). Hence,
using weak compactness, we have

(Nk
1 )t ⇀ ˜(N1)t, (Nk

2 )t ⇀ ˜(N2)t.

Since L2(0, T ;H1
0 (Ω)) ⊂⊂ L2(Q) [26], we have Nk

1 → Ñ1, Nk
2 → Ñ2 strongly in

L2(Q).
Now we outline the proof of uniqueness. Let (Ň1, Ň2) be another solution to

the state system (2.2) with the initial and boundary conditions Ň1(x, 0) = N10(x),
Ň2(x, 0) = N20(x), x ∈ Ω, Ň1(x, t) = Ň2(x, t) = 0, (x, t) ∈ ∂Ω× (0, T ).

Let Ň1 = eλtw̌1, Ň2 = eλtw̌2, N1 = eλtw1, and N2 = eλtw2, whereλ > 0 is to be
chosen later. After making this change of variables in the corresponding equations,
we obtain ∫ T

0

〈(w1)t, φ1〉 dt+
∫

Q

λw1φ1 dx dt

+
∫

Q

n∑
i,j=1

d1
ij(x, t)(w1)xi(φ1)xj −

∫
Q

n∑
i=1

(r1i (x, t)φ1)xiw1

=
∫

Q

(
(θ1(t, u)− eλta11w1)w1 − eλta12w1w2

)
φ1,

where φ1, φ2 ∈ V . Similar equations can be written for w2, w̌1, and w̌2. Define
Q1 := Ω × (0, T1) for 0 < T1 ≤ T . Subtracting the equation for w̌i from the
equation for wi, using wi− w̌i as test functions, using uniform ellipticity, regularity
of the coefficients, and Cauchy inequality, after standard manipulations we will
obtain

(λ− c1e
λT1 − c2)

∫
Q1

{(w1 − w̌1)2 + (w2 − w̌2)2} dx dt ≤ 0,
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where ci depends only on the coefficients and L∞ bounds of wi, w̌i. Choosing λ
large enough and T1 small, we can obtain the uniqueness on Ω×(0, T1). By stacking
time intervals, we can obtain the uniqueness on Ω× (0, T ). �

4. Existence of an optimal control

To prove the existence of an optimal control we borrow the technique used in
[9] and adopt it for our case. Notice here we also include the space variable so we
have different function spaces to consider. First, we rewrite the state system (2.2)
as follows

(N1)t = θ1(t, u(x, t))N1 + g1, (N2)t = θ2(t, u(x, t))N2 + g2, (4.1)

where

g1 = L1N1 − (a11N
2
1 + a12N1N2), g2 = L2N2 − (a22N

2
2 + a21N1N2).

Note that (4.1) is understood in the weak sense (3.2).
Denote

N =
[
N1(x, t)
N2(x, t)

]
, f(t,N, u) =

[
θ1(t, u(x, t))N1

θ2(t, u(x, t))N2

]
, g(t,N) =

[
g1
g2

]
.

Observe that for given t ∈ [0, T ], we have f : [0, T ] × (H1
0 (Ω))2 × U → (H1

0 (Ω))2,
[16, (P3) on p.103].

Next we will rewrite the objective functional (2.6). Let f0 : [0, T ] × U → R be
defined as follows f0(t, u) :=

∫
Ω
(B1u+B2u

2)χΓ dx. Also, define

g0(N(T )) :=
∫

Ω

[AN1(x, T )−BN2(x, T )] dx.

Therefore, we obtain J(u) = g0(N(T ))−
∫ T

0
f0(t, u) dt. We rewrite the state system

as follows:
∂N

∂t
= f(t,N, u) + g(t,N), (4.2)

which is to be understood in the weak sense (3.2).

Theorem 4.1. Suppose there exists κ ≥ 0 such that[
a1

a2

]
= κ

[
b1
b2

]
, B1κ−B2 ≤ 0. (4.3)

Then there exists an optimal control u in U with the corresponding states N1, N2

that maximizes the objective functional (2.6).

Proof. For given (t,N) ∈ [0, T ]× (H1
0 (Ω))2, define the set

E(t,N) :=
{

(z0, z) ∈ R× (H1
0 (Ω))2 : z0(t) ≥ f0(t, u),

z(t) = f(t,N, u) for some 0 ≤ u(x, t) ≤M
}
.

We break the proof into two steps: Step 1. If, for a.e. t ∈ [0, T ] and each N ∈
(H1

0 (Ω))2, the set E is convex and closed, then there exists an optimal control. Step
2. The set E is convex and closed.

Proof of Step 1. Let {un} be a maximizing sequence and Nn
1 , N

n
2 be the states

corresponding to un. From the a priori estimates, we have

Nn
1 → N̂1 and Nn

2 → N̂2 in L2(Q). (4.4)
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Then, it follows that for a.e. t ∈ [0, T ]

(z0
n(t), zn(t)) ≡

(
f0

(
t,Nn(t), un(t)

)
, f

(
t,Nn(t), un(t)

))
∈ E(t,Nn(t)).

Since Nn(x, t) is bounded in (L2(0, T ;H1
0 (Ω)))2, it follows that {zn(·)} converges

weakly to some ẑ in (L2(0, T ;H1
0 (Ω)))2. Then by Mazur’s theorem we can find a

convex combination αij ≥ 0, and
∑

i≥j αij = 1, such that ψj(·) ≡
∑

i≥j αijzi(·) →
ẑ in L2(0, T ;H1

0 (Ω)). This implies that ψj(t) → ẑ(t) in H1
0 (Ω) a.e. t ∈ [0, T ]. If

we set ψ0
j (·) ≡

∑
i≥j αijz

0
i (·), then we will get ẑ0(t) ≡ lim infj→∞ ψ0

j (t) ≥ 0 a.e.
t ∈ [0, T ] [16, (P3), p.103)], f0(t, u) ≥ 0. Then, since the set E(t,N) is closed
and convex (i.e., has Cesari property), it will follow that (ẑ0(t), ẑ(t)) ∈ E(t,N) a.e.
t ∈ [0, T ]. After passing to the limit in the state system, we obtain

∂N̂

∂t
= ẑ(t) + g(t, N̂),

sup
u∈U

J(u(·)) = lim
n→∞

J(un) ≤ g0(N̂(T ))−
∫ T

0

ẑ0(t) dt.

Since (ẑ0(t), ẑ(t)) ∈ E(t, N̂) a.e. t ∈ [0, T ], it follows that there exits û(·) such that
ẑ0(t) ≥ f0(t, û(t)) and ẑ(t) = f(t, N̂(t), û(t)) a.e. t ∈ [0, T ]. This implies that N̂(·)
is the state that corresponds to the control û(·), and

sup
u∈U

J(u(·)) ≤ g0(N̂(T ))−
∫ T

0

ẑ0(t) dt

≤ g0(N̂(T ))−
∫ T

0

f0(t, û(t)) dt = J(û(·)).

Hence, û(·) is an optimal control. This completes the proof of Step 1.
Proof of Step 2. Since the map u 7→ (f0(t, u), f(t,N, u))) is continuous, it

follows that the set E(t,N) is closed. To obtain the convexity, observe that condition
(4.3) gives

f(t,N, u) = (κ+ u)χΓ(t)
[
b1N1

b2N2

]
+

[
c1N1

c2N2

]
. (4.5)

When t ∈ [0, T ] \ Γ, then the set E(t,N) = [0,∞) ×
{[

0
0

]}
is trivially convex.

Therefore, we consider t ∈ Γ. Denote ϕ(u) := κu2 + u. As κ ≥ 0, it follows that
ϕ′(u) = 2κ + 1 ≥ 0, for u ∈ [0, 1]. This implies that ϕ(·) is convex, monotone
increasing, and

ϕ([0, 1]) = [ϕ(0), ϕ(1)] = [0, κ+ 1], (4.6)

which is convex. Hence, f(t,N, [0, 1]) is convex. For arbitrary (z0, z), (ζ0, ζ) ∈
E(t,N) and λ ∈ (0, 1), we have some u, v ∈ [0, 1] such that

z = f(t,N, u), z0 ≥ f0(t, u), ζ = f(t,N, v), ζ0 ≥ f0(t, v).

The convexity of ϕ(·) together with (4.6) imply that there exists w ∈ [0, 1] such
that

ϕ(λu+ (1− λ)v) ≤ λϕ(u) + (1− λ)ϕ(v) = ϕ(w) (4.7)
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which leads to

λz + (1− λ)ζ ≡ λf(t,N, u) + (1− λ)f(t,N, v)

= [λϕ(u) + (1− λ)ϕ(v)]
[
b1N1

b2N2

]
= ϕ(w)

[
b1N1

b2N2

]
= f(t,N,w).

(4.8)

By the monotonicity of u 7→ ϕ(u) and the first inequality in (4.7), we obtain

λu+ (1− λ)v ≤ w. (4.9)

Moreover, the equality in (4.7) implies that

κ[λu2 + (1− λ)v2 − w2] + λu+ (1− λ)v − w = 0. (4.10)

Hence, when κ > 0, taking into account (4.3), (4.9), and (4.10), we get

λz0 + (1− λ)ζ0 − f0(t, w)

≥ λf0(t, u) + (1− λ)f0(t, v)− f0(t, w)

= B2[λu2 + (1− λ)v2 − w2] +B1[λu+ (1− λ)v − w]

=
(
B1 −

B2

κ

)
[λu+ (1− λ)v − w] ≥ 0.

In the case when κ = 0, (4.10) becomes w = λu+ (1− λ)v, which leads to (due to
convexity of the map u 7→ u2)

λz0 + (1− λ)ζ0 − f0(t, w) ≥ λf0(t, u) + (1− λ)f0(t, v)− f0(t, w)

= B2{λu2 + (1− λ)v2 − [λu+ (1− λ)v]2} ≥ 0.

Hence, it follows that

λ(z0, z) + (1− λ)(ζ0, ζ) ∈ E(t,N),

which proves the convexity of the set E(t,N). �

We remark that the constraints on the parameters obtained in (4.3) are identical
to those in [9].

5. Sensitivity

To characterize the optimal control, we need to differentiate the objective func-
tional with respect to the control u. Since Ni = Ni(u), i = 1, 2 is involved in J(u),
we first must prove appropriate differentiability of the mapping u −→ Ni(u), i = 1, 2
whose derivative is called the sensitivity.

Theorem 5.1. The mapping u 7→ N(u) = (N1(u), N2(u)) is differentiable in the
following sense:

N1(u+ εh)−N1(u)
ε

w
⇀ Ψ1 in L2(0, T ;H1

0 (Ω)),

N2(u+ εh)−N2(u)
ε

w
⇀ Ψ2 in L2(0, T ;H1

0 (Ω)),
(5.1)
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as ε→ 0 for any u ∈ U and h ∈ L∞(Q) such that u+εh ∈ U for small ε. Moreover,
the sensitivities, Ψ1 ∈ L2(0, T ;H1

0 (Ω)) and Ψ2 ∈ L2(0, T ;H1
0 (Ω))) satisfy

(Ψ1)t = L1Ψ1 + ((a1u
2 + b1u)χΓ + c1)Ψ1

+ (2a1u+ b1)hN1 − 2a11N1Ψ1 − a12(N1Ψ2 +N2Ψ1),

(Ψ2)t = L2Ψ2 + ((a2u
2 + b2u)χΓ + c2)Ψ2

+ (2a2u+ b2)hN2 − 2a22N2Ψ2 − a21(N1Ψ2 +N2Ψ1).

Ψ1(x, 0) = Ψ2(x, 0) = 0, x ∈ Ω,

Ψ1(x, t) = Ψ2(x, t) = 0, (x, t) ∈ ∂Ω× (0, T ).

(5.2)

Proof. Define Nε
1 = N1(u+ εh), Nε

2 = N2(u+ εh). Let Nε
1 = eλtW ε

1 , Nε
2 = eλtW ε

2 ,
N1 = eλtW1, and N2 = eλtW2, where λ > 0 is to be chosen later. After making
this change of variables in (2.2), we obtain∫ T

0

〈(W1)t, φ1〉 dt+
∫

Q

λW1φ1

+
∫

Q

n∑
i,j=1

d1
ij(x, t)(W1)xi(φ1)xj −

∫
Q

n∑
i=1

(r1i (x, t)φ1)xiW1

=
∫

Q

(
(θ1(t, u)− eλta11W1)W1 − eλta12W1W2

)
φ1,

where φ1 ∈ V .
Similar equations can be written for W2, W ε

1 and W ε
2 . We derive our estimate

on Q1 := Ω× (0, T1). Then subtracting the equation for W1 from the equation for
W ε

1 and dividing by ε, and taking φ1 = W ε
1−W1

ε , using uniform ellipticity, regularity
of the coefficients, and Cauchy inequality where necessary, we obtain the estimate

1
2

∫
Ω×{t=T1}

∣∣∣W ε
1 −W1

ε

∣∣∣2 dx+ λ

∫
Q1

∣∣∣W ε
1 −W1

ε

∣∣∣2 +
µ

2

∫
Q1

∣∣∣∇(W ε
1 −W1

ε

)∣∣∣2
≤ C1

∫
Q1

∣∣∣W ε
1 −W1

ε

∣∣∣2 dx dt+ C2e
λT1

∫
Q1

∣∣∣W ε
1 −W1

ε

∣∣∣2|W1 +W ε
1 |

+ C3

∫
Q1

|W ε
1 |

∣∣∣W ε
1 −W1

ε

∣∣∣ dx dt+ C4e
λT1

∫
Q1

|W2|
∣∣∣W ε

1 −W1

ε

∣∣∣2 dx dt
+ C5e

λT1

∫
Q1

|W ε
1 |

∣∣∣W ε
2 −W2

ε

∣∣∣∣∣∣W ε
1 −W1

ε

∣∣∣ dx dt
≤ C6e

λT1

∫
Q1

∣∣∣W ε
1 −W1

ε

∣∣∣2 dx dt+ C7

∫
Q1

|h|2 dx dt.

A similar estimate can be derived for the quotient W ε
2−W2

ε . Combining the estimates
for both quotients gives

1
2

∫
Ω×{t=T1}

∣∣∣W ε
1 −W1

ε

∣∣∣2 +
∣∣∣W ε

2 −W2

ε

∣∣∣2 dx
+ (λ− C9e

λT1 − C8)
∫

Q1

∣∣∣W ε
1 −W1

ε

∣∣∣2 +
∣∣∣W ε

2 −W2

ε

∣∣∣2 dx dt
+
µ

2

∫
Q1

∣∣∣∇(W ε
1 −W1

ε

)∣∣∣2 +
µ

2

∫
Q1

∣∣∣∇(W ε
2 −W2

ε

)∣∣∣2
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≤ C10

∫
Q1

|h|2 dx dt,

where Ci only depends on the coefficients and L∞ bounds of Wi,W
ε
i . Choosing λ

large enough and T1 small, we get the estimate

‖W
ε
i −Wi

ε
‖L2(0,T1;H1

0 (Ω)) ≤ C, i = 1, 2,

where C > 0 denotes a generic constant. By stacking time intervals, we can obtain
the estimate on Ω × (0, T ). This will give us the desired estimate for Nε

i −Ni

ε .
Hence, we conclude that there exist Ψi ∈ V, i = 1, 2, such that on a subsequence
Nε

i −Ni

ε ⇀ Ψi in L2(0, T ;H1
0 (Ω)). Using the state system (2.2) and the above

estimate it can be shown that∥∥(Nε
i −Ni

ε

)
t

∥∥
L2(0,T ;H−1(Ω))

≤ C,

which implies that (Nε
i −Ni

ε )t
w
⇀ (Ψi)t in L2(0, T ;H−1(Ω)). Using the compactness

result by Simon [26], we have Nε
i −Ni

ε → Ψi strongly in L2(Q). Now, passing to the
limit in the weak form of the PDEs satisfied by the quotients Nε

i −Ni

ε , i = 1, 2, we
obtain (5.2). �

To rewrite the sensitivity system in matrix form, let

M =
(
M11 M12

M21 M22,

)
, (5.3)

where M11 = −((a1u
2+b1u)χΓ+c1)+2a11N1+a12N2, M12 = a12N1, M21 = a21N2,

and M22 = −((a2u
2 + b2u)χΓ + c2) + 2a22N2 + a21N1. Then

L
(

Ψ1

Ψ2

)
=

(
(Ψ1)t − L1Ψ1

(Ψ2)t − L2Ψ2

)
+M

(
Ψ1

Ψ2

)
. (5.4)

6. The adjoint system

Now we are ready to characterize the optimal control, by deriving the optimality
system through differentiating J(u) with respect to u at an optimal control. Define
the adjoint system as

L∗
(
p
q

)
=

(
A
−B

)
, (6.1)

where

L∗
(
p
q

)
=

−pt −
∑n

i,j=1

(
d1

ij(x, t)pxi

)
xj

−
∑n

i=1 r
1
i (x, t)pxi

−qt −
∑n

i,j=1

(
d2

ij(x, t)qxi

)
xj

−
∑n

i=1 r
2
i (x, t)qxi

 +MT

(
p
q

)
, (6.2)

where MT is the transpose of the matrix M . The terminal conditions are

p(x, T ) = A, q(x, T ) = −B, x ∈ Ω. (6.3)

So given an optimal control u∗ and the corresponding states N∗
1 and N∗

2 , the adjoint
variables p and q satisfy

L∗1p =
(
(a1(u∗)2 + b1u

∗)χΓ + c1 − 2a11N
∗
1 − a12N

∗
2

)
p− a21N

∗
2 q, in Ω,

p = 0, on ∂Ω× (0, T ), p(x, T ) = A, for x ∈ Ω,
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L∗2q =
(
(a2(u∗)2 + b2u

∗)χΓ + c2 − 2a22N
∗
2 − a21N

∗
1

)
q − a12N

∗
1 p, in Ω,

q = 0, on ∂Ω× (0, T ), q(x, T ) = −B, for x ∈ Ω.

Theorem 6.1. If there exists κ ≥ 0, such that B1κ − B2 < 0, ai = κbi, i = 1, 2,
then given an optimal control u∗ and the corresponding states N∗

1 and N∗
2 , there

exist solutions p and q to the adjoint system. Moreover, let S = {(x, t) : B2 −
a1N

∗
1 p − a2N

∗
2 q = 0} and m(S) be a Lebesgue measure of S, then this optimal

control u∗ is characterized by the following:
(1) if m(S) > 0, then u∗ = M on S;
(2) if m(S) = 0, then for (x, t) 6∈ S,

u∗ = min
{
M,max{0, b1N

∗
1 p+ b2N

∗
2 q −B1

2B2 − 2a1N∗
1 p− 2a2N∗

2 q
}
}
, (6.4)

and it holds on Ω× Γ a.e.

Proof. Since the adjoint system is linear, by the standard theory of parabolic
equations there exists a weak solution (p, q) satisfying the adjoint system. Let
Nε

i = Ni(u∗ + εh), i = 1, 2, with u∗ + εh ∈ U and h ∈ L∞(Q). Then

0 ≥ lim
ε→0+

J(u∗ + εh)− J(u∗)
ε

= lim
ε→0+

∫
Ω

(
A
Nε

1 −N1

ε
(x, T )−B

Nε
2 −N2

ε
(x, T )

)
−

∫∫
Ω×Γ

(B1h+ 2B2u
∗h)

=
∫

Ω

(
AΨ1(x, T )−BΨ2(x, T )

)
dx−

∫∫
Ω×Γ

(B1 + 2B2u
∗)h dx dt

=
∫

Ω×(0,T )

(p, q)L
(

Ψ1

Ψ2

)
dx−

∫∫
Ω×Γ

(B1 + 2B2u
∗)h dx dt

=
∫∫

Ω×Γ

(p, q)
(

(2a1u
∗ + b1)hN∗

1

(2a2u
∗ + b2)hN∗

2

)
dx dt−

∫∫
Ω×Γ

(B1 + 2B2u
∗)h dx dt

=
∫∫

Ω×Γ

(
(2a1u

∗ + b1)N∗
1 p+ (2a2u

∗ + b2)N∗
2 q −B1 − 2B2u

∗
)
h dx dt

=
∫∫

Ω×Γ

(
u∗(2a1N

∗
1 p+ 2a2N

∗
2 q − 2B2) + b1N

∗
1 p+ b2N

∗
2 q −B1

)
h dx dt.

(6.5)
Observe that we used (6.1) so that∫∫

Ω×(0,T )

(Ψ1,Ψ2)L∗
(
p
q

)
=

∫∫
Ω×(0,T )

(p, q)L
(

Ψ1

Ψ2

)
(6.6)

in weak sense. Also we used the sensitivity system (5.4).
Define S = {(x, t) : B2−a1N

∗
1 p−a2N

∗
2 q = 0}. Let m(S) > 0 and h have support

on S. Recalling that ai = κbi, i = 1, 2, it follows from (6.5) that

0 ≥
∫∫

S

κ(b1N∗
1 p+ b2N

∗
2 q −B1)h dx dt

=
∫∫

S

(κb1N∗
1 p+ κb2N

∗
2 q − κB1)h dx dt

=
∫∫

S

(a1N
∗
1 p+ a2N

∗
2 q − κB1)h dx dt =

∫∫
S

(B2 − κB1)h dx dt,
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if κB1 < B2, then h ≤ 0, which implies u∗ = M on S.
Otherwise, if m(S) = 0, then for (x, t) 6∈ S, on the set 0 < u < M , we choose

variation h with support on this set and h to be of any sign, which gives (2a1u
∗ +

b1)N∗
1 p+ (2a2u

∗ + b2)N∗
2 q − B1 − 2B2u

∗ = 0. On the set where u = 0, we choose
h ≥ 0, which implies (2a1u

∗+b1)N∗
1 p+(2a2u

∗+b2)N∗
2 q−B1−2B2u

∗ ≤ 0. Similarly
when u = M , we choose h ≤ 0 which implies (2a1u

∗+ b1)N∗
1 p+ (2a2u

∗+ b2)N∗
2 q−

B1 − 2B2u
∗ ≥ 0. This can be written in the compact form as

u∗ = min
{
M,max{0, b1N

∗
1 p+ b2N

∗
2 q −B1

2B2 − 2a1N∗
1 p− 2a2N∗

2 q
}
}
. (6.7)

�

We remark that characterization of the optimal control (6.4) is identical to the
one in [9] except that now it includes space.

7. Uniqueness of the optimal control

The state equations (2.2)-(2.5), the adjoint equations (6.1)-(6.3), and the optimal
control characterization (6.4) together are called the optimality system (OS). The
weak solutions of the optimality system exist by Theorems 3.2 and 5.1, at the same
time the existence of an optimal control u and corresponding states N1, N2 implies
the existence of p and q.

Now we will prove the uniqueness of the optimal control.

Theorem 7.1. For T sufficiently small, there is a unique optimal control.

Proof. We show uniqueness by showing strict convexity of the map

u ∈ U → J(u).

This convexity follows from showing for all u, v ∈ U , and 0 < ε < 1,

g′′(ε) < 0,

where g(ε) = J(εu+ (1− ε)v) = J(v + ε(u− v)). To calculate

g′(ε) = lim
δ→0

J(v + (ε+ δ)(u− v))− J(v + ε(u− v))
δ

, (7.1)

denote

Ñε
i = Ñi(v + ε(u− v)), Ñi

ε+δ
= Ñi(v + (ε+ δ)(u− v)), i = 1, 2. (7.2)

Using the same argument like in Theorem 5.1, we have

Ñ1
ε+δ − Ñε

1

δ

w
⇀ Ψ̃1,

Ñ2
ε+δ − Ñε

2

δ

w
⇀ Ψ̃2 in L2(0, T ;H1

0 (Ω)) (7.3)

as δ → 0, and Ψ̃1 satisfies

(Ψ̃ε
1)t = L1Ψ̃ε

1 +
[(
a1(v + ε(u− v))2 + b1(v + ε(u− v))

)
χΓ + c1

]
Ψ̃ε

1

+
[
2a1(v + ε(u− v))χΓ + b1

]
(u− v)Ñε

1 − 2a11Ñε
1 Ψ̃ε

1

− a12(Ñε
1 Ψ̃ε

2 + Ñε
2 Ψ̃ε

1),

Ψ̃ε
1(x, 0) = Ψ̃ε

2(x, 0) = 0, x ∈ Ω,

Ψ̃ε
1(x, t) = Ψ̃ε

2(x, t) = 0, (x, t) ∈ ∂Ω× (0, T ).
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A similar equation can be written for Ψ̃2. Estimating like in Theorem 5.1, we obtain
for 0 < s ≤ T ,

1
2

∫
Ω

(Ψ̃ε
1(x, s))

2 + (Ψ̃ε
2(x, s))

2 dx+B[Ψ̃ε
1, Ψ̃

ε
1; t] +B[Ψ̃ε

2, Ψ̃
ε
2; t]

≤ C1

∫ s

0

∫
Ω

((Ψ̃ε
1)

2 + (Ψ̃ε
2)

2) dxdt+ C2

∫ T

0

(u− v)2 dt,

where C1 only depends on the coefficients and L∞ bounds for Ñε
i , i = 1, 2. Using

Gronwall’s inequality, we have

sup
0≤s≤T

∫
Ω

(Ψ̃ε
1(x, s))

2 + (Ψ̃ε
2(x, s))

2 dx ≤ C3

∫ T

0

(u− v)2 dt.

To calculate g′′(ε), we need a second derivative of Ni with respect to the control.
Similar a priori estimates imply that

Ψ̃ε+η
1 − Ψ̃ε

1

η

w
⇀ σ̃ε

1,
Ψ̃ε+η

2 − Ψ̃ε
2

η

w
⇀ σ̃ε

2 in L2(0, T ;H1
0 (Ω)), (7.4)

as η → 0, and σ̃ε
1 satisfies

(σ̃ε
1)t = L1σ̃

ε
1 +

[(
a1(v + ε(u− v))2 + b1(v + ε(u− v))

)
χΓ + c1

]
σ̃ε

1

+ 2
[
2a1(v + ε(u− v)) + b1

]
(u− v)Ψ̃ε

1 + 2a1(u− v)2Ñε
1

− 2a11((Ψ̃ε
1)

2 + Ñε
1 )− a12(2Ψ̃ε

1Ψ̃
ε
2 + Ñε

1 σ̃
ε
2 + Ñε

2 σ̃
ε
1),

σ̃ε
1(x, 0) = σ̃ε

2(x, 0) = 0, x ∈ Ω,

σ̃ε
1(x, t) = σ̃ε

2(x, t) = 0, (x, t) ∈ ∂Ω× (0, T ).

A similar equation can be written for σ̃ε
2.

Estimating and using Gronwall’s inequality, after standard manipulations we
obtain

sup
0≤s≤T

∫
Ω

(σ̃ε
1(x, s))

2 + (σ̃ε
2(x, s))

2 dx ≤ C6

( ∫ T

0

(u− v)2 dt
)2
. (7.5)

Continuing from (7.1), we are ready to calculate derivatives of g. We can show that

g′(ε) =
∫

Ω

AΨ̃ε
1(x, T )−BΨ̃ε

2(x, T ) dx

−
∫∫

Ω×Γ

B1(u− v) + 2B2(v + ε(u− v))(u− v) dx dt.

Similarly, for the second derivative, we have

g′′(ε) = lim
η→0

g′(ε+ η)− g′(ε)
η

≤
∫

Ω

(2B2T − C7)(u− v)2 dx,

which gives g′′(ε) < 0 for T sufficiently small. �

8. Numerical results

In this section we will solve the optimality system (8.1)–(8.5) numerically by the
following iteration method. 1. Initialization: choose initial guesses for N10, N20

and u0. 2. Discretization: use the finite difference method to discretize state and
adjoint equations to nonlinear algebraic system. 3. Iteration: un is known,
(a) solve discretized (8.1) for states N1, N2;
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(b) solve discretized (8.3) for adjoints p, q;
(c) update the control by entering new state and adjoint values into the character-
ization of the optimal control (8.5).
4. Repeat step 3 if a stopping criterion is not satisfied.

Recall that according to our model we use the control on the time interval Γ =
∪T

i=1 [σi, τi], with T denoting the number of years of controls and intervals [σi, τi]
being in the i-th year.

The spatial domain Ω = [0, L] is an interval in R with L > 0. Thus, the original
nonlinear system of parabolic PDE becomes:

(N1)t = d1(N1)xx − r1(N1)x +
(
θ1(t, u(x, t))− a11N1

)
N1 − a12N1N2,

(N2)t = d2(N2)xx − r2(N2)x +
(
θ2(t, u(x, t))− a22N2

)
N2 − a21N1N2,

(8.1)

where
θi(t, u(x, t)) =

(
aiu(x, t)2 + biu(x, t)

)
χΓ + ci, i = 1, 2.

Here di, ri, aij , i, j = 1, 2 are constants. Flooding is allowed during spring thaw
when cottonwood seeds are dispersed from trees. The initial and boundary condi-
tions are:

N1(x, 0) = N10(x), N2(x, 0) = N20(x), x ∈ [0, L],

N1(0, t) = N2(0, t) = 0, N1(L, t) = N2(L, t) = 0, t ∈ (0, T ).
(8.2)

The adjoint equations are

−pt = d1pxx + r1px +
(
θ1(t, u(x, t))− 2a11N1 − a12N2

)
p− a21N2q,

−qt = d2qxx + r2qx +
(
θ2(t, u(x, t))− 2a22N2 − a21N1

)
q − a12N1p,

(8.3)

with the terminal and boundary conditions

p(x, T ) = A, q(x, T ) = −B, x ∈ [0, L],

p(0, t) = q(0, t) = 0, p(L, t) = q(L, t) = 0, t ∈ (0, T ).
(8.4)

The characterization for the optimal control is

u∗ = min
{
M,max{0, b1N

∗
1 p+ b2N

∗
2 q −B1

2B2 − 2a1N∗
1 p− 2a2N∗

2 q
}
}
. (8.5)

Note that in our numerical simulations, we always have m(S) = 0, where S is
defined in Theorem 6.1. We will solve equations (8.1)–(8.5).

In the cottonwood - salt cedar scenario, the quadratic growth the functions
θi(t, u(x, t)), i = 1, 2, represent reasonable qualitative behavior of the newly de-
veloped seedling communities. To model this interaction, we choose θ1 < θ2 when
u = 0 and

θ1 = 0.1u2 + u+ 0.2, θ2 = −0.1u2 − u+ 0.4,
where κ = 0.1 which satisfies the restriction in (4.3).

Since the salt cedar currently takes over the cottonwood, our initial conditions
are N1(x, 0) = x(1 − x), N2(x, 0) = 3x(1 − x). The upper bound for the control
is M = 1, the length of the one dimensional interval is L = 1. We want to see
the effect of the growth functions θi, so we choose the diffusion and convection
coefficients dk = 1, rk = 1, k = 1, 2. The interaction coefficients aij represent how
species j affects species i and we choose a11 = 0.005, a12 = 0.001, a21 = 0.12,
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Cottonwood Salt cedar

Figure 1. Cottonwood and salt cedar without control, L = 1, T = 3

Cottonwood Salt cedar

Figure 2. Cottonwood and salt cedar with B2 = 5, B1 = 1

Cottonwood Salt cedar

Figure 3. Cottonwood and salt cedar with B2 = 10, B1 = 1

and a22 = 0.02, since Sher et al. [24] found that cottonwood density affects the
population of both species (in a negative way) more than the salt cedar density.

Without any flooding (control), cottonwood density increases slowly and the salt
cedar density increases rapidly. See Figure 1.
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Consider the case when A = 10, B = 1. First we pick B1 = 1, B2 = 5. To
correspond to the spring thaw, flooding is only allowed during the first 1/4 of
the year in order to illustrate the idea for a period of 3 years. We can see the
cottonwood density increases while the salt cedar decreases and the time when this
happens corresponds to the flooding time every year. See Figure 2.

Note that we need to choose parameters B1, B2 carefully, because of the restric-
tion in (4.3). We want to see how the parameter B2, the quadratic cost coefficient
in J(u), affects the optimal flooding strategy. We fix B1 = 1, as we increase the
values of B2, flooding levels are decreasing, since it is more expensive to apply
the flooding. See Figures 2 and 3. We can see in Figure 3 cottonwood density is
still increasing and salt cedar is decreasing but not as much as in Figure 2 when
it is much cheaper to apply the control. Figure 4 gives the corresponding optimal
flooding strategies for B1 = 1 and B2 = 5, 10, we can examine that as B2 increases,
optimal control strategy is decreasing.

Control: B2 = 5 Control: B2 = 10

Figure 4. Control - flood: B2 = 5, 10, fixed B1 = 1

Figure 5. Control - flood: B2 = 5, B1 = 5

We also want to study the effect of the parameter B1 - the linear cost coefficient
in J(u). We fix B2 = 5 and compare B1 = 1 with B1 = 5 to observe as B1 increases,
the flooding is decreasing. See Figures 4(a) and 5 for the comparison of the optimal
flooding.
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In summary, the control (flooding) is focused near the middle of the region due
to the Dirichlet boundary conditions we imposed on our problem. When increasing
the cost coefficients B1 or B2, the flooding level is decreasing. Compared with
Figure 1 without any control, Figures 2 and 3 gave good illustrations that flooding
can indeed control the invasive species N2 and help the growth of the native species
N1.

Conclusions. This project shows that the optimal control theory can be an ap-
propriate tool for designing the intervention strategy of the invasive - native species
interaction. We proved existence of the optimal control when the control is qua-
dratic in the growth function in the PDE system under certain conditions on the
coefficients. We gave numerical examples for different parameter values that can
help natural resource managers to apply the most appropriate and cost-effective
control methods to the invasive - native species scenario.

Acknowledgements. W. Ding was supported by Faculty Research and Creative
Activities (FRCAC) at Middle Tennessee State University.

References

[1] N. U. Ahmed, K. L. Teo; Optimal control of distributed parameter systems, North Holland,
Amsterdam, 1981.

[2] V. Barbu; Analysis and control of nonlinear infinite dimensional systems, Academic Press,
New York, 1993.

[3] M. G. Bhat, K. R. Fister, S. Lenhart; An optimal control model for surface runoff contami-
nation of a large river basin, Natural Resource Modeling, 2 (1999) 175-195.

[4] R. S. Cantrell, C. Cosner; Spatial ecology via reaction-diffusion equations, Wiley, New Jersey,
2003.

[5] W. Ding, S. Lenhart; Optimal Harvesting of a Spatially Explicit Fishery Model, Natural
Resource Modeling, 22:2 (2009) 173-211.

[6] L. C. Evans; Partial Differential Equations, American Mathematical Society, Providence,
1998.

[7] H. O. Fattorini; Infinite dimensional optimization and control theory, Cambridge, New York,
1999.

[8] R. Fister; Optimal control of harvesting in a predator-pray parabolic system, Houston J. of
Math, 3 (1997) 341-355.

[9] D. Kern, S. Lenhart, R. Miller, J. Yong; Optimal control applied to native-invasive population
dynamics, Journal of Biological Dynamics, 1:4 (2007) 413-426.

[10] I. Lasiecka, R. Triggiani; Control theory for partial differential equations, Vol. I and II,
Cambridge Univ. Press, New York, 2000.

[11] S. Lenhart, M. Bhat; Application of distributed parameter control model in wildlife damage
management, Mathematical Models and Methods in Applied Sciences, 2 (1993) 423-439.

[12] S. Lenhart, H. Thieme; Editorial note on special issue: Modeling and control of natural
resources, Natural Resource Modeling, 18 (2005) 3:235-236.

[13] S. Lenhart, M. Liang, V. Protopopescu; Optimal control of boundary habitat hostility for
interacting species, Math. Methods Appl. Sci., 22:13 (1999) 1061-1077.

[14] S. Lenhart, J. Workman; Optimal Control Applied to Biological Models, Chapman Hall/CRC,
Boca Raton, 2007.

[15] M. A. Lewis, J. Bulllock; Mathematical models for plant dispersal, Demography, (2003) 21-25.
[16] X. Li, J. Yong; Optimal control theory for infinite dimensional systems, Birkhauser, 1995.
[17] J. L. Lions; Optimal control of systems governed by partial differential equations, Springer-

Verlag, New York, 1971.
[18] P. Neittaanmaki, D. Tiba; Optimal control of nonlinear parabolic systems: theory, algorithms

and applications, Marcel Dekker, New York, 1994.
[19] W. Nentwig (ed.); Biological Invasions, Ecological Studies, 193 (2007), Springer.



18 W. DING, V. HRYNKIV, X. MU EJDE-2012/237

[20] A. Okubo, S. Levin; A theoretical framework for data analysis of wind dispersal of seeds and
pollen, Ecology, 70:2 (1989) 329-338.

[21] A. Okubo, S. Levin; Diffusion and Ecological Problems: Modern Perspectives, Springer,
Berlin, 2001.

[22] S. V. Petrovskii, B. Li; Exactly solvable models of biological invasion, Chapman & Hall/CRC,
2006

[23] L. S. Pontryagin, V. S. Boltyanskii, R. V. Gamkrelidze, E. F. Mishchenko; The Mathematical
Theory of Optimal Processes, Wiley-Interscience, New York, 1962.

[24] A. A. Sher, D. L. Marshall, J. P. Taylor; Establishment patterns of native Populus and Salix
in the presence of invasive Tamarix, Ecological Applications, 12 (2002) 760-772.

[25] N. Shigesada, K. Kawasaki; Biological Invasions: Theory and Practice, Oxford University
Press, Oxford, 1997.

[26] J. Simon; Compact sets in the space Lp((0, T ); B), Ann. Mat. Pura. Appl. CXLVI, (1987)
65-96.

Wandi Ding
Department of Mathematical Sciences and Computational Science Program, Middle
Tennessee State University, Murfreesboro, TN 37132, USA

E-mail address: wandi.ding@mtsu.edu

Volodymyr Hrynkiv
Department of Computer and Mathematical Sciences, University of Houston - Down-
town, Houston, TX 77002, USA

E-mail address: HrynkivV@uhd.edu

Xiaoyu Mu
Department of Mathematics, University of Tennessee, Knoxville, TN 37996-1320, USA

E-mail address: xiaoyumoon@gmail.com


	1. Introduction
	2. The model
	3. Existence of the state system
	4. Existence of an optimal control
	5. Sensitivity
	6. The adjoint system
	7. Uniqueness of the optimal control
	8. Numerical results
	Conclusions
	Acknowledgements

	References

