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Abstract. This paper serves as an introduction to the theory of optimal con-
trol applied to systems of discrete time models with an emphasis on disease
models. We outline the steps in solving such optimal control problems and
discuss the necessary conditions. A simple disease example provides detailed
methodology in charactering the optimal control through the use of Pontrya-
gin’s Maximum Principle. Numerical results are given to illustrate several
cases.

1. Introduction

For many populations, births and growth occur in regular times each year
(or each cycle). Discrete time models or difference equations are well suited to
describe the life histories of organisms with discrete reproduction and/or growth.
For example, the Beverton-Holt stock-recruitment [7] model for a population Nt at
time t is

Nt+1 = rNt

(
1 +Nt

r − 1

K

)−1

.

Another application involves a population which is divided into separate dis-
crete age classes. At each time step, a certain proportion of each class may survive
and enter the next age class. Individuals in the first age class originate through
reproduction from other classes

N1(t+ 1) = f1N1(t) + f2N2(t) + f3N3(t)

N2(t+ l) = p1N1(t)

N3(t+ 1) = p2N2(t).

For more background on discrete models, see the paper by Yakubu [13] in this
volume and see the book by Caswell [3] and the edited volume by Abello and
Cormode [1].
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2 WANDI DING AND SUZANNE LENHART

For examples involving disease models in discrete time, see [2, 4, 6]. We remark
that in discrete time models, the order of events within a time step is crucial, so one
should keep that in mind when building a discrete model. See [5] for an epidemic
which is discrete in time and space and in which the order of events is important.

In an optimal control problem, one adjusts controls in a dynamic system to
achieve a goal. The underlying system can have a variety of types of equations such
as ordinary differential equations, partial differential equations, difference equa-
tions, stochastic differential equations or integrodifference equations. In this paper,
we are considering only systems of equations which are discrete in time.

In control of a single difference equation, with discrete time steps, we denote
u = (u0, u1, . . . , uT−1) as the control and x = (x0, x1, . . . , xT ) the state. Given
x0, the state function satisfies the difference equation modeling the scenario. The
control affects the state difference equation,

xk+1 = g(xk, uk, k)

for k = 0, 1, 2, . . . , T − 1 and with x0 as given. Both the control and the state
usually affect the goal, which is called the objective functional. We seek to find an
optimal control and corresponding state that achieve the maximum (or minimum)
of our objective functional.

Let’s start with a simple example of optimal control of a discrete time model
to illustrate the ideas.

min
u

2∑
k=0

1

2

[
x2
k +Bu2

k

]

subject to xk+1 = xk + uk for k = 0, 1, 2,

x0 = 5.

The state has 4 components, x0, x1, x2, x3 while the control has one fewer compo-
nent, u0, u1, u2. Here the goal is to minimize the square of the state terms and the
square of the control terms. The coefficient B is a weight factor, that gives the
relative importance of the two terms in the goal.

Now we formulate a control problem in more generality. Given a control u =
(u0, u1, . . . , uT−1) and initial state x0, the state equation is given by the difference
equation

xk+1 = g(xk, uk, k)

for k = 0, 1, 2, . . . , T − 1. Note that the state has one more component than the
control

x = (x0, x1, . . . , xT ).

We have the following objective functional, which represents our goal:

J(u) = φ(xT ) +
T−1∑
k=0

f(xk, uk, k).

The term, φ(xT ), represents a type of ‘salvage’ term; for example, one may want
the population to be large at the final time T. The objective functional can be
maximized or minimized over controls u. In the minimization case, the goal is to
find an optimal control u∗ such that

J(u∗) = min
u

J(u),
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where the minimization is over a class of vectors with bounded components (with
bounds specified to fit the situation.)

Necessary conditions, that an optimal control and corresponding state must
satisfy, can be derived similarly to the case of ordinary differential equations, using
a generalization of Pontryagin’s Maximum Principle [9]. To see more detail about
the derivation of the necessary conditions, see the book by Lenhart and Workman
[8]. The key idea is introducing the adjoint function to attach the difference equa-
tion to the objective functional, resulting in the formation of a function called the
Hamiltonian. This principle converts the problem of finding the control to optimize
the objective functional subject to the state difference equation with initial condi-
tion to finding the control to optimize Hamiltonian pointwise (with respect to the
control).

Now we have the Hamiltonian at each time step k, where our adjoint function
is λ = (λ0, λ1, . . . , λT ):

Hk = f(xk, uk, k) + λk+1g(xk, uk, k), for k = 0, 1, . . . , T − 1.

Notice the indexing on the adjoint; it is one step ahead of the other terms. The
necessary condition states that the Hamiltonian is maximized at each step with
respect to the control uk at the optimal control u∗

k. The adjoint equations and
corresponding final time conditions (transversality conditions) are also given. If we
do not have any constraints on our control, the necessary conditions are

λk =
∂Hk

∂xk

λT = φ′(x∗
T )

∂Hk

∂uk
= 0 at u∗.

Notice that the adjoint function has final time conditions while the state function
has initial time conditions. Suppose that the controls are bounded, which is quite
usual in biological examples. Suppose a ≤ uk ≤ b for each k, then these bounds
need to be imposed after you solve the optimality equation

∂Hk

∂uk
= 0 at u∗

for each component of the control at each time step.

2. Simple Illustrative Example

Next we consider a simple example [8] to illustrate the solution technique. Our
objective functional is

min
u

2∑
k=0

1

2

[
x2
k + u2

k

]

subject to xk+1 = xk + uk for k = 0, 1, 2,

x0 = 5.

At each time step, the control uk is the input, that will result in the growth or
decline of the state. What optimal control is expected? We are seeking to minimize
the state and the size of control. We expect the optimal control to be negative or
zero.
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Starting with the Hamiltonian,

Hk =
1

2

[
x2
k + u2

k

]
+ λk+1(xk + uk),

our necessary conditions are:

λk =
∂Hk

∂xk
= xk + λk+1 for k = 0, 1, 2,

λ3 = 0,

0 =
∂Hk

∂uk
= uk + λk+1 at u∗

k.

Thus the optimal control satisfies

uk = −λk+1,

which gives

xk+1 = xk − λk+1 for k = 0, 1, 2.

Our transversality condition is

λ3 = 0,

since we do not have a salvage term, meaning there is no dependence on the state
at the final time in the objective functional.

Combining above conditions yields

x3 = x2

and four equations in x1, x2, λ1, λ2,

x1 = 5− λ1, x2 = x1 − λ2

λ1 = x1 + λ2, λ2 = x2.

After solving these algebraic equations, the optimal state values are

x∗
1 = 2, x∗

2 = 1, x∗
3 = 1

and the optimal control values are

u∗
0 = −3, u∗

1 = −1, u∗
2 = 0.

We see in this simple case, only the controls are making changes in the states.

3. System Case

Next we state the necessary conditions in the case of a system of difference
equations:

xj,k+1 = gj(x1,k, . . . , xn,k, u1,k, . . . , um,k, k),

with

xj = (xj,0, xj,1, . . . , xj,T ).

for k = 0, 1, 2, . . . , T − 1, j = 1, 2, . . . , n. Note that k is the index for the time steps
and j is the index for the states. There are m controls, n states, and T time steps.
Define the objective functional as
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J(u) = φ(x1,T , . . . , xn,T ) +

T−1∑
k=0

f(x1,k, . . . , xn,k, u1,k, . . . , um,k, k)

Now we have one adjoint variable for each state variable and form the Hamil-
tonian,

Hk = f(x1,k, . . . , xn,k, u1,k, . . . , um,k, k)

+
n∑

j=1

λj,k+1gj(x1,k, . . . , xn,k, u1,k, . . . , um,k, k),

we can obtain the necessary conditions,

λj,k =
∂Hk

∂xj,k

λj,T =
∂φ

∂xj,T
(x1,T , . . . , xn,T )

∂Hk

∂ui,k
= 0 at (u∗

1,k, . . . , u
∗
m,k).

for k = 0, 1, 2, . . . , T − 1, j = 1, 2, . . . , n and i = 0, 1, 2, . . . ,m.
We illustrate the system case in the following disease example.

4. Disease Example

We illustrate the techniques of optimal control using a simple epidemic example.
This volume contains many examples of epidemic models and the emphasis in this
article is on control techniques.

Consider an SIR system, in which the state variables are S, susceptibles, I,
infecteds and R, immune individuals. Our stae equations are:

Sk+1 = Sk(1− uk)− β
(
Sk(1− uk)

)
Ik,(4.1)

Ik+1 = Ik + βSk(1− uk)Ik − d2Ik,

Rk+1 = Rk + ukSk,

where k = 1, 2, . . . , T − 1, β is the transmission rate and d2 is the additional death
rate due to infection. The control variable is u with 0 ≤ uk ≤ 1 − d, with d > 0.
The control can be interpreted as the proportion to be vaccinated, so we can see
that ukSk individuals move from the susceptible class to the immune class at time
step k. Notice the order of the events in this model. Here the vaccination happens
first, meaning that a proportion of susceptibles ukSk is moved from the susceptible
class to the immune class. Then the interaction of the non-immune susceptibles
with the infecteds, which is why the infectivity term has the format,

βSk(1− uk)Ik.

The remaining susceptibles, after the movement of the vaccinated susceptibles to
the immune class,

Sk(1− uk),

are interacting with the infecteds, Ik. Note that infected individuals have the
disease and are able to transmit it.
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Note that positivity of the components of a discrete model can be an issue in
a discrete model. We are using a small number of time steps here since we are
considering control actions reacting to an outbreak of a disease in short time. Thus
the sizes of our parameters and the number of time steps insures the positivity of
the S, I, R classes here.

The goal is to minimize our objective functional,

T−1∑
k=1

(Ik +Bu2
k +B1uk) + IT ,

where T is the final time. The constants B and B1 are the cost coefficients. We are
minimizing the number of infected individuals during the time steps k = 1 to T − 1
and at the final time and also minimizing the cost of administering the control. We
are assuming the cost of administering the control is quadratic for simplicity. See
[8] for other formats of controls in objective functionals.

4.1. The adjoints. The Hamiltonian at time step k is

Hk = Ik +Bu2
k +B1uk + λ1,k+1

(
Sk(1− uk)− β

(
Sk(1− uk)

)
Ik

)
(4.2)

+ λ2,k+1

(
Ik + βSk(1− uk)Ik − d2Ik

)

+ λ3,k+1

(
Rk + ukSk

)
.

The equations for the adjoint variables for k = 1, 2, . . . , T − 1 are

λ1,k =
∂Hk

∂Sk
= λ1,k+1

(
1− uk − β(1− uk)Ik

)
(4.3)

+ λ2,k+1

(
β(1− uk)Ik

)
+ λ3,k+1uk,

λ2,k =
∂Hk

∂Ik
= 1 + λ1,k+1

(
− βSk(1− uk)

)
(4.4)

+ λ2,k+1

(
1 + βSk(1− uk)− d2

)
+

λ3,k =
∂Hk

∂Rk
= λ3,k+1.(4.5)

Our transersality conditions give at time T , we have λ1,T = λ3,T = 0, since ST

and RT are not in the objective functional. But notice that λ2,T = 1 since

φ(IT ) = IT and
∂φ

∂I
= 1.

For k = 1, 2, . . . , T − 1, the control characterization is derived from

(4.6)
∂Hk

∂uk
= 2Buk+B1+λ1,k+1

(
−Sk+βSkIk

)
+λ2,k+1

(
−βSkIk

)
+λ3,k+1Sk = 0,

subject to the lower and upper bounds for u. For k = 1, 2, . . . , T − 1, the charac-
terization becomes

u∗
k = min

(
1−d,max

(
0, [λ1,k+1r(Sk−βSkIk)+λ2,k+1(βSkIk)−λ3,k+1Sk−B1]/2B

))
.
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Figure 1. S, I, R without control
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Figure 2. Case 1: S, I, R with B = 1

4.2. Numerical Examples. The optimality system consists of the state sys-
tem, adjoint system, initial and final time conditions, and the control characteriza-
tion. We solve the optimality system by an iterative method with forward solving
of the state system followed by backward solving of the adjoint system. We start
with an initial guess for the control at the first iteration and then before the next
iteration, we update the control by using the characterization. We continued until
convergence of successive iterates is achieved.

We illustrate two cases of changing of the parameters in the objective functional.
Case 1. Quadratic Cost (B1 = 0)
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Figure 3. Case 1: S, I, R with B = 10
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Figure 4. Case 1: S, I, R with B = 20

We choose S(1) = 100, I(1) = 5, β = 0.02, d2 = 0.1, d = 0.2 and T = 4. First
we give the numerical results without any control in Figure 1. Then we vary cost
coefficient B = 1, 10, 20, 50 in J to see how it affects the control and the susceptible,
infected and immune populations in Figures 2-5. We can see the number of infecteds
are reduced significantly. As B gets bigger, it is more costly to apply the control,
so the control effort is decreasing.
Case 2. Approximate Linear Cost

We still use the same parameters for S(1), I(1), β, d2, d and T . For Figure 6,
we take B = 0.01 and B1 = 1 in J to approximate the linear cost. The control for
the first two time steps reaches the upper bound, then reduces to the lower bound
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Figure 5. Case 1: S, I, R with B = 50
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Figure 6. Case 2: S, I, R with B = 0.01, B1 = 1

for the third time step. In Figure 7, we take B1 = 10, B = 0.01 and see the control
for the first time step reaches the upper bound, then reduces to the lower bound
for the second and third time steps. So the control is a “bang-bang” control, which
means the optimal control values are only at the upper and lower bounds. Note the
differences in the optimal controls and the states between the two cases, illustrating
that parameters in the objective functional make an impact.
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Figure 7. Case 2: S, I, R with B = 0.01, B1 = 10

5. Conclusion

Here we have presented the techniques of optimal control on some simple ex-
amples of discrete models. Given a model with a control, the format of an optimal
control depends on the format of the objective functional and the corresponding
parameters. We illustrate in section 4 how changing parameters in an objective
functional can affect the optimal controls.

For further examples of optimal control with discrete time, see [10, 11, 12].
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