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We present a differential equation model of the innate immune
response to SARS-CoV-2 within the alveolar epithelium.
Critical determinants of the viral dynamics and host
response, including type I and type II alveolar epithelial cells,
interferons, chemokines, toxins and innate immune cells, are
included. We estimate model parameters, compute the
within-host basic reproductive number, and study the
impacts of therapies, prophylactics, and host/pathogen
variability on the course of the infection. Model simulations
indicate that the innate immune response suppresses the
infection and enables the alveolar epithelium to partially
recover. While very robust antiviral therapy controls the
infection and enables the epithelium to heal, moderate
therapy is of limited benefit. Meanwhile interferon therapy is
predicted to reduce viral load but exacerbate tissue damage.
The deleterious effects of interferon therapy are especially
apparent late in the infection. Individual variation in ACE2
expression, epithelial cell interferon production, and SARS-
CoV-2 spike protein binding affinity are predicted to
significantly impact prognosis.
1. Introduction
Since the emergence of SARS-CoV-2 in December 2019, numerous
epidemiological between-host models have been developed to
forecast the spread of the virus across the USA and globally
[1–9]. These have predicted the effects of non-pharmaceutical
interventions and influenced government policy. By comparison,
the use of mathematical modelling to investigate the within-host
dynamics of the virus have been less common [10–12]. These
models typically simulate the infection of a homogeneous
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population of cells and are parametrized by patient pathology data, such as chest radiograph score [10],
or viral load [11,12]. Within-host models are useful tools for exploring how the course of infection is
influenced by model parameters, especially those related to the host’s immune system and
pharmaceutical interventions.

One very early within-host model was limited by the availability of patient data for model fitting,
requiring the use of chest radiographic score as a proxy for the infection of epithelial cells [10].
Despite this limitation, by fitting a simple three-compartment model (including target cells, infectious
cells, and virus) to data, Li et al. calculated a within-host basic reproductive number (R0) of 3.79 for
SARS-CoV-2 and compared this with the R0 value estimated previously for the closely related and
more virulent MERS-CoV (R0 of 8.16) [10]. In addition, [10] explored the sensitivity of R0 to model
parameters, including those related to host immunity, and numerically simulated the impact of
antiviral treatment. It is important to note that the model presented in [10] does not include a
dynamic immune response, instead the host’s immunity is completely determined by static model
parameters. By contrast, [11] compared the ability of three simple models to describe viral load data.
Two of these were target-cell-limited models, which, similar to that in [10], lacked a dynamic immune
response. The third was a two-compartment model, which included a dynamic immune response but
neglected host cell dynamics. The two-compartment model was determined to best fit viral load data.
The within-host basic reproductive number was also computed for several patients by fitting the
target-cell-limited model to data. The basic reproductive number varied widely between patients, but
was predicted to be very large, with a mean value greater than 10.

More recently, Wang et al. [12] used viral load data from human patients [13–15] and primate studies
[16] to explore how the course of infection and viral load dynamics are shaped by cell-mediated and
humoral immune responses. Here, the cell-mediated response is proportional to the concentration of
lymphocytes present, and the humoral response leads to an exponential increase in the rate of virus
decay later in the infection. Simulations of the model indicated that while the cell-mediated response
is able to bring viral load down to a low plateau, the humoral response is necessary for clearance of
the virus. This work also considered how decreasing the rate of viral replication and increasing the
rate of cell-mediated killing might impact the course of the infection, as these changes coarsely
represent the effect of anti-viral and interferon treatment, respectively.

At time of writing, the worldwide distribution of vaccine has recently begun. This campaign will take
many months, if not years, to complete, and it remains unclear whether it will successfully bring the
current COVID-19 pandemic to a close. Hence, there remains a need to better understand the within-
host dynamics of SARS-CoV-2 infection and how these dynamics are shaped by the immune system
and therapeutic interventions, alike. Here, we present a model of the innate immune response to SARS-
CoV-2 infection within the alveolar epithelium. Although, SARS-CoV-2 infects a wide range of tissues
[17], infection of the lung plays a central role in disease progression, with pneumonia and acute
respiratory distress syndrome (ARDS) being major complications [18]. Similarly, while the adaptive
immune response is doubtless critical for determining the ultimate outcome of infection, we specifically
focus our model on the initial innate immune response in order to (i) better understand factors that
influence the propensity of the virus to take root in the alveolar epithelium, and (ii) determine how the
scene is set when the adaptive immune response is mustered. In this way, our model differs
significantly from those that precede it, accounting for both the unique biology of the alveolar epithelial
cells and the distinctive environment/architecture they create. In particular, our model includes the
demographics of these cells and their varied susceptibility to infection. Also, we model the alveolar
epithelium as a surface surrounded by a thin layer of fluid. Our concrete representation of the epithelial
structure enables us to better estimate model parameters (e.g. phagocytic parameters) from available
empirical data, where previous models relied heavily on model fitting for parameter estimation. Finally,
our model provides an explicit description of the interferon response and the recruitment and activation
of innate immune cells, including how these processes contribute to viral control and tissue damage.
This level of detail imparts predictive power. For example, the model could be useful for predicting
how new strains of the virus might behave in the lung, studying pharmaceutical interventions and
exploring the impact of patient variability on infection dynamics.

In §2, we present the model with and without disease, along with a characterization of the model
steady states and basic reproductive number. Additional support for the model and details on model
parametrization are provided in appendix A. In §3, we numerically simulate the model in order to
fit the more uncertain parameters within the ranges delineated in appendix A and also perform
numerical simulations to investigate how pharmaceutical interventions, prophylactic measures and
individual variability impact the dynamics of the infection. Finally, in §4, we summarize our results.
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2. The model
2.1. Model without virus

2.1.1. Model overview

The alveolar epithelium forms a barrier between the lung and the outside air. Our model of the alveolar
epithelium includes alveolar type I cells, alveolar type II cells and alveolar macrophages. Thin alveolar
epithelial type I cells mediate oxygen exchange, while alveolar epithelial type II cells maintain the
integrity of the alveolar region, in part through the secretion of lung surfactant [19]. In addition,
alveolar type II cells proliferate and differentiate into type I cells [19]. A fraction of alveolar type II
cells, termed alveolar epithelial progenitor cells (AEPs), are thought to be responsible for maintaining
homeostasis of the healthy lung [20,21]. In response to lung injury, AEPs and other alveolar type II
cells proliferate [21,22]. Indeed, whereas only about a small fraction of alveolar type II cells show
positive markers of proliferation in the healthy lung, after severe lung injury 85% of these cells show
active proliferation [21].

Alveolar type II cells are further characterized by their expression of angiotensin-converting enzyme 2
(ACE2), the receptor that mediates entry of SARS-CoV-2. Indeed, alveolar type II cells are the primary
ACE2-expressing cell in the alveolus [23]. Nonetheless, only a small fraction, about 1–7%, of alveolar
type II cells are thought to express ACE2 [23,24]. Interestingly, some evidence suggests that ACE2 may
be specifically enriched in AEP type II cells [23,24]. Similar to AEPs, neural progenitor cells were
found to express ACE2 [25]. The observation that ACE2 is expressed by multiple progenitor cell types,
together with the fact that ACE2 expression is specifically required for exercise-induced neural
proliferation [26], suggests that ACE2 may promote proliferation of alveolar epithelial cells. However,
this idea is at odds with a general paradigm in which ACE2 opposes renin angiotensin system-
mediated proliferation [27]. Indeed, ACE2 was found to be specifically depleted in actively
proliferating, fibrotic regions of the human lung [28]. On balance, research on ACE2 expression and
cellular proliferation leads us to conclude that ACE2 participates in balancing a tissue’s proliferative
response, possibly opposing or promoting proliferation in a context-dependent manner. In particular,
we do not find sufficient evidence to support a model in which ACE2 expression either indicates or
contradicts proliferation of alveolar type II cells. Hence we assume that ACE2-positive (ACE2+) and
ACE2-negative (ACE2−) alveolar type II cells are equally likely to proliferate.

ACE2 is a dynamically regulated component of the renin angiotensin system, and its activity is
partially determined by the balance of signalling through opposing arms of this system [29]. SARS-
CoV-2 infection specifically downregulates ACE2 expression on the host cell’s surface by inducing
ACE2 endocytosis and stimulating enzymes that cleave ACE2 [29]. Meanwhile, ACE2 transcription
may be promoted by interferon signalling and c-Jun N-terminal kinase (JNK) activation [28,30]. As
ACE2 expression is believed to be a primary determinant of susceptibility, the dynamic regulation of
ACE2 supports a model in which cells actively transition between the susceptible and immune
classes. Although changes in the extracellular environment due to infection of surrounding cells may
alter movement between these classes through a myriad of mechanisms, for simplicity, we focus on
interferon stimulation and infection as the primary mechanisms through which susceptible cells are
actively depleted, and let the basal rates of transition between ACE2+ and ACE2− classes remain
unchanged by infection. Note then, the ratio of the latter rates is determined by the fraction of cells
which are susceptible/ACE2+.

Let A1(t), A�
2 ðtÞ and Aþ

2 ðtÞ be the numbers of alveolar type I cells, immune (ACE2−) alveolar type II
cells and susceptible (ACE2+) alveolar type II cells, measured in units of millions of cells. Our equations
to describe the dynamics of the alveolar cells are as follows:

dA1

dt
¼ aA2 � sAA1,

dA�
2

dt
¼ r2 1� A1 þ A2

KA

� �
A�

2 þ aþ2 A
þ
2 � ðaþ a�2 þ sAÞA�

2

and
dAþ

2

dt
¼ r2 1� A1 þ A2

KA

� �
Aþ

2 þ a�2 A
�
2 � ðaþ aþ2 þ sAÞAþ

2 ,

9>>>>>>>>=
>>>>>>>>;

ð2:1Þ

where we let the reproduction of type II cells follow a logistic type equation with growth rate r2 and
carrying capacity KA, and where A2 ¼ Aþ

2 þ A�
2 is the total number of type II cells. The mortality rate
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of both cells types is σA. The rate of differentiation, a, is

a ¼ d 1� A1

KA1

� �
,

where KA1 controls the fraction of type II cells that are differentiating as a function of the number of type I
cells present, and δ is the maximal average rate of differentiation. Finally, type II cells transition from
immune to susceptible and back with rates a�2 ¼ gpþðdþ sAÞ and aþ2 ¼ gð1� pþÞðdþ sAÞ, so that
when the ACE2-expression structure of the A2 cell population equilibrates, a fraction, p+, of these cells
will be positive for the ACE2 receptor. The factor γ is chosen to be at least one so that the timescale
on which the structure of the population equilibrates is determined relative to the type II cell’s
lifespan. In particular, the ACE2 expression structure is expected to equilibrate fairly quickly, since the
ACE2 receptor is important for maintaining appropriate pulmonary pressure [31].

Finally, we let M(t) be the population of inactivated immune cells in the alveolar region. We suppose
these cells are recruited at a constant rate rM and die at a constant per capita rate σM. Then the dynamics of
the inactivated immune cells in the absence of infection are described as follows:

dM
dt

¼ rM � sMM:

2.1.2. Characterization of the model steady states

We find that model (2.1) has a trivial steady state and a unique positive steady state, ð �A1, �A�
2 ,

�Aþ
2 Þ, such that

— 0 , �A1 , KA1 and
— 0 , �A1 þ �Aþ

2 þ �A�
2 , KA provided r2 > δ + σA and δ/KA1 < r2/KA.

Note that in biological terms, the final two conditions assert respectively that cells proliferate on a faster
timescale than they differentiate and die, and that the rate of differentiation is less sensitive to changes in
the size of the type I cell population than the rate of proliferation is to changes in the size of the total
alveolar epithelial cell population.

Indeed, letting A2 ¼ Aþ
2 þ A�

2 , we find that A1 and A2 are constant when

0 ¼ KAKA1ðKA1 � A1Þcþ bdA1ðKA1 � A1Þ � r2sK2
A1A1, ð2:2Þ

where c = r2− δ− σ > 0 and b = KAδ− rKA1 < 0. Putting x =KA1−A1, the steady state condition is

hðxÞ ¼ �bx2 þ KA1ðcKAdþ bdþ r2sK1Þx� rsK3
A1 ¼ 0:

Since hð0Þ ¼ �rsK3
A1 , 0 and hðKA1Þ ¼ aKAK2

A1d . 0, there exists a unique solution �x so that 0 , �x , KA1:

This corresponds to a unique steady state 0 , �A1 , KA1: (The other solution corresponds to a steady state
where A1 >KA1.) Furthermore, we find that the corresponding steady-state value of A2 is
s �A1KA1=dðKA1 � �A1Þ . 0: Moreover, from the differential equation for A2, we find that �A1 þ �A2 , KA:

At the steady-state solution, the Jacobian matrix is given by

J ¼
�s� d

KA1
�A2

s�A1
�A2

�A2
d

KA1
� r2

KA

� �
�r2

�A2
KA

2
4

3
5, ð2:3Þ

so that stability of the solution is determined by the roots of

jJ � lIj ¼ l2 þ sþ d

KA1

�A2 þ r
�A2

KA

� �
l� s �A1

d

KA1
� r2
KA

� �
:

Since all coefficients of this equation in λ are positive, we have either two negative roots or two complex
roots with negative real part. In either case, the steady-state solution of interest is stable.

At steady sate, the population of macrophages is �M ¼ rM=sM.

2.2. Within-host model of coronavirus

2.2.1. Model overview

In this subsection, we propose a within-host compartmental model of the innate immune response to
coronavirus infection. As before, cellular compartments are measured in units of millions of cells. In



Table 1. Model variables.

variable biological meaning

A1 type I alveolar cells

Aþ2 susceptible (ACE2-positive) type II alveolar cells

A�2 immune (ACE2-negative) type II alveolar cells

Aþ�
2 ACE2-positive type II alveolar cells that are stimulated by interferons

A��
2 ACE2-negative type II alveolar cells that are stimulated by interferons

I infectious type II alveolar cells

I� infectious type II alveolar cells stimulated by interferons

D apoptotic alveolar cells

F concentration of interferons

X concentration of chemokines

M inactivated innate immune cells

M� activated innate immune cells

T concentration of toxins

V concentration of free virus
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addition to cells, the model with infection includes small chemical mediators and virus particles. These
other compartments are measured in units of density (for example nM). This choice of units is motivated
by the structure of the alveolar epithelial region, in which epithelial cells are coated in a thin layer of fluid,
where smaller particles are suspended. Indeed, the alveolar epithelial cells constitute an alveolar surface
with an area about 130 m2 that is covered by alveolar fluid with a volume of about 40ml [32], or about
C1 = 20 ml per lung. The free virus is suspended in this alveolar fluid. Interferons and chemokines are
dispersed into a greater pool of fluid, which includes interstitial fluid and capillary fluid. This greater
pool of lung fluid has a volume about 500ml [32], or about C2 = 250 ml per lung.

The variable names and the corresponding biological meaning are listed in table 1. As in the virus-
free model, in the presence of virus, epithelial cells proliferate, differentiate, transition between
ACE2-positive and ACE2-negative classes and die. In the presence of virus, cells are also subject to
toxin-induced cell death, infection and interferon stimulation. Below we present a flexible model for a
cell’s functional response to such stimuli.
2.2.2. Modelling a cell’s functional response to a stimulus

In the model equations, the function

f ðC, S; K, qÞ ¼ S

Sþ q
C
2
þ K

ð2:4Þ

determines the degree to which the population’s functional response rate is saturated with respect to
some stimulant. Here, C represents the concentration of cells, S the concentration of stimulant and K
represents the dissociation constant between the stimulant and the cell. In this model, the response
rate is half-maximal when S = q(C/2) +K.

To motivate this functional form, note that the functional response of the cell is initiated by the binding
of cell-surface receptors to ligands associated with the stimulant (e.g. viral proteins, cytokines and
chemokines). We assume that this initial step is fast compared with the overall response time, so that
f(C, S; K, q) can be considered as the fraction of cells that are sufficiently stimulated to carry out the
response. Alternatively, we may consider the response to be homogeneous throughout the population,
in which case f(C, S; K, q) represents the fraction of the maximal response rate that each cell achieves.

The concentration of stimulant required to induce a half-maximal response rate is controlled by both
the dissociation constant and the cellular density, as a single stimulating particle will generally be able to
stimulate at most one cell (e.g. one viral particle can infect at most one cell). Moreover, a cell may need to
contact multiple stimulating particles in order to respond maximally. Hence we have introduced a
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parameter q to represent the number of stimulating contacts that a cell requires to trigger a maximal
functional response rate. Note that when the cellular density is low, the dissociation constant between
the stimulating particle and the cell is the primary determinant of the response rate. This dissociation
constant is related to the dissociation constant between the stimulant’s ligand and the cell-surface
receptor (KLR). In particular, we expect that K≤KLR since the stimulating particle may induce multiple
ligand–receptor bonds.

In cases where (i) the stimulant is not a small particle suspended in the alveolar fluid, or (ii) the
responding population is present at low density, the saturation of the cell’s functional response rate is
instead modelled as

gðS; KÞ ¼ S
Sþ K

:

2.2.3. Model equations

In the presence of virus, alveolar epithelial cells are subject to toxin-induced cell death, infection and
interferon stimulation. Indeed, activated immune cells release toxins including oxidants, proteinase-
containing granuoles, and neutrophil extracellular traps (NETS) in an attempt to limit viral
dissemination [33,34]. However, these toxins may also cause cell death and tissue damage. The per
capita rate of cell death in response to toxins is modelled as

rgðT; KTÞ : ¼ rT
T þ KT

,

where r is the maximal response rate, and KT is the half saturation constant. (See (A.5) Parameters
describing the production and actions of toxins for additional details). Susceptible type II cells can become
infectious due to exposure to virus or become protected due to interferon stimulation. We let α and β
be the maximal rates at which cells transition to the interferon-protected and infectious classes,
respectively, so that cells transition to the interferon-protected class at a per capita rate

af ðA, F; KF, qFÞ,
and transition to the infectious class at a per capita rate

bf Aþ
2 , V; KV ,

qV
C1

� �
:

Above, A is the total concentration of alveolar cells (in pM) that are not yet treated by interferons. That is,
A ¼ ððAþ

2 þ A�
2 þ A1 þ IÞ=C1Þ10�2=6:02, where 10−2/6.02 is the conversion factor converting units of

106 cells ml�1 to pM. We assume that the interferon-stimulated cells, Aþ�
2 and A��

2 , lose their protected
status at rate μ. Moreover, interferon-protected [35] and infectious cells do not proliferate. The
equations describing untreated type I and II cells are then:

dA1

dt
¼ aðAþ

2 þ A�
2 þ Aþ�

2 þ A��
2 Þ � sAA1 � rgðT; KTÞA1,

dAþ
2

dt
¼ r2 1� AT

KA

� �
Aþ

2 þ a�2 A
�
2 � ðaþ aþ2 þ sAÞAþ

2

� saf ðA, F; KF, qÞAþ
2 � bf Aþ

2 , V; KV ,
qV
C1

� �
Aþ

2 � rgðT; KTÞAþ
2 þ mAþ�

2 ,

dA�
2

dt
¼ r2 1� AT

KA

� �
A�

2 þ aþ2 A
þ
2 � ðaþ a�2 þ sAÞA�

2

� af ðA, F; KF, qÞA�
2 � rgðT; KTÞA�

2 þ mA��
2 ,

8>>>>>>>>>>>>>>>>><
>>>>>>>>>>>>>>>>>:

where AT ¼ A1 þ Aþ
2 þ A�

2 þ Aþ�
2 þ A��

2 þ I þ I� is the total number of alveolar type I and II cells. The
equations for interferon-stimulated cells are

dAþ�
2

dt
¼ af ðA, F; KF, qÞAþ

2 � ðmþ sA þ aÞAþ�
2 � rgðT, KTÞAþ�

2 ,

dA��
2

dt
¼ af ðA, F; KF, qÞA�

2 � ðmþ sA þ aÞA��
2 � rgðT; KTÞA��

2 :

8>><
>>:

Next, we describe the dynamics of infectious type II cells. These cells are recruited by the infection of
susceptible type II cells. We model four mechanisms for the removal of infectious cells: (i) natural death
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at per capita rate σA; (ii) virus-induced apoptosis at per capita rate σI; (iii) toxin-induced death at per capita
rate rg(T; KT); and (iv) interferon stimulation, the last of which yields interferon-stimulated infectious
cells (I�). The equations for I and I� are as follows:

dI
dt

¼ bf Aþ
2 , V; KV ,

qV
C1

� �
Aþ

2 � af ðA, F; KF, qÞI � ðsI þ sAÞI � rgðT; KTÞI,

dI�

dt
¼ af ðA, F; KF, qÞI � ðsI þ sAÞI� � rgðT; KTÞI�:

8>>><
>>>:

Apoptotic infectious cells, D, are recruited through infection-induced, natural and toxin-induced
death of infectious cells at rates σI (I + I�), σA (I + I�) and rg(T; KT)(I + I�), respectively. In addition,
these cells are cleared by innate immune cells at a rate of (kM0(M/C1) + kM(M�/C1))D, where kM0 and
kM are the clearance rates for activated and inactivated immune cells, respectively. Note we have
divided M and M� by C1 as the clearance rates are measured in volume per million cells. The
equation for apoptotic infectious cells is then

dD
dt

¼ ðsI þ sAÞðI þ I�Þ � kM0
M
C1

þ kM
M�

C1

� �
Dþ rgðT; KTÞðI þ I�Þ:

Next, we describe the dynamics of the innate immune cells. For simplicity, we group innate immune
cells into activated immune cells, M�, and inactive/resting immune cells, M. We assume resting immune
cells have a natural recruitment rate rM and a natural decay rate σM. Inactive immune cells can be also
recruited by chemokines, which occurs at rate r�MgðX; KXÞ. Here, r�M is the maximum recruitment rate
of immune cells attracted by chemokines and KX is the half-saturation constant for chemokine-
mediated recruitment. In our model, immune cells can be activated after engulfing virus or apoptotic
cells, which occurs with a second-order rate constant kM0. Active and resting immune cells also
function to clear toxins, and this results in death. Finally, s�

M is the decay rate of activated immune
cells, and σM is that of inactive immune cells. The equations describing innate immune cells are

dM�

dt
¼ kM0M V þ D

C1

� �
� rTM

� � s�
MM

� � kMM�T,

dM
dt

¼ rM þ r�MgðX; KXÞ � sMM� kM0M V þ D
C1

� �
� kM0MT:

8>>><
>>>:

We assume active immune cells produce toxins at a rate ρT. In addition, both active and resting
immune cells clear toxins with second-order rate constants of kM and kM0, respectively. Then the
equation for toxins is

dT
dt

¼ rTM
� � kM0MT � kMM�T:

We suppose that interferons are mainly produced by infectious epithelial cells and activated immune
cells. However, since coronaviruses like SARS-CoV-2 have evolved mechanisms to counter the
production of interferons in infectious epithelial cells [36,37], we suppose the production rate by
infectious cells, rF2 , is much smaller than the production rate by activated immune cells, rF1 . In fact,
we set the baseline value of rF2 ¼ 0 in our numerical simulations. Interferons are subject to natural
decay at rate σF. The equation describing the interferons is

dF
dt

¼ 1
C2

(rF2 I þ rF2 I
� þ rF1M

�)� sFF,

where we have divided the production term by C2 as the rate of production is measured as pmoles per
million cells, while interferons are measured in units of density (pM).

Chemokines are produced by a variety of cells. In our model, we assume that the infectious,
interferon-stimulated and activated immune cells produce chemokines at the same per capita rate ρX,
while chemokines decay at rate σX. The equation describing chemokines is

dX
dt

¼ rX
C2

(I þ I� þ A�
2 þM�)� sXX:

We suppose that free virus particles in the alveolar region are produced by infectious cells at rate ρV, and
interferon-stimulated infectious cells at a much smaller rate, r�V . We model two mechanisms for the
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removal of free virus particles: (i) virus particles are engulfed by resting and active immune cells at rates
kM0 and kM, respectively; (ii) virus particles decay naturally at rate σV. The equation describing free virus is

dV
dt

¼ 1
C1

(r�VI
� þ rVI � ðkM0Mþ kMM�ÞV)� sVV:

Combining the above discussions, our within-host model for the innate immune response to SARS-
CoV-2 is the following system in 14 variables and 39 parameters

dA1

dt
¼ aA2 � sAA1 � rgðT; KTÞA1,

dAþ
2

dt
¼ r2 1� AT

KA

� �
Aþ

2 þ a�2 A
�
2 � ðaþ aþ2 þ sAÞAþ

� af ðA, F; KF, qÞAþ
2 � bf Aþ

2 , V; KV ,
qV
C1

� �
Aþ

2 � rgðT; KTÞAþ
2 þ mAþ�

2 ,

dA�
2

dt
¼ r2 1� AT

KA

� �
A�

2 þ aþ2 A
þ
2 � ðaþ a�2 þ sAÞA�

2

� af ðA, F; KF, qÞA�
2 � rgðT; KTÞA�

2 þ mA��
2 ,

dAþ�
2

dt
¼ af ðA, F; KF, qÞAþ

2 � ðmþ sA þ aÞAþ�
2 � rgðT, KTÞAþ�

2 ,

dA��
2

dt
¼ af ðA, F; KF, qÞA�

2 � ðmþ sA þ aÞA��
2 � rgðT; KTÞA��

2 ,

dI
dt

¼ bf Aþ
2 , V; KV ,

qV
C1

� �
Aþ

2 � af ðA, F; KF, qÞI � ðsI þ sAÞI � rgðT; KTÞI,

dI�

dt
¼ af ðA, F; KF, qÞI � ðsI þ sAÞI� � rgðT; KTÞI�,

dD
dt

¼ ðsI þ sAÞðI þ I�Þ � kM0
M
C1

þ kM
M�

C1

� �
Dþ rgðT; KTÞðI þ I�Þ,

dF
dt

¼ 1
C2

(rF2 I þ rF2 I
� þ rF1M

�)� sFF,

dX
dt

¼ rX
C2

(I þ I� þ A�
2 þM�)� sXX,

dT
dt

¼ rTM
� � kM0MT � kMM�T,

dM�

dt
¼ kM0M V þ D

C1

� �
� rTM

� � s�
MM

� � kMM�T,

dM
dt

¼ rM þ r�MgðX; KXÞ � sMM� kM0M V þ D
C1

� �
� kM0MT

and
dV
dt

¼ 1
C1

(r�VI
� þ rVI � ðkM0Mþ kMM�ÞV)� sVV,

9>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>=
>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>;

ð2:5Þ

where A2 = A2
+ + A2

− + A2
+∗ + A2

−∗ is the total number of uninfected type II epithelial cells.

2.2.4. Stability of the disease-free equilibrium
To compute the basic reproductive number and determine the stability of the disease-free equilibrium,
we segregate the state variables into three classes: diseased variables x = [I, I�, V ], inflamed variables
w ¼ [D, F, X, T, M�, A� , Aþ�] and healthy variables y ¼ [A1, Aþ

2 , A
�
2 , M]: The disease-free equilibrium

is ð�x, �w, �yÞ ¼ ð0, 0, �yÞ, where �y is characterized in §2.1.2. The Jacobian matrix at the disease-free
equilibrium can be decomposed as

R� S 0 0
� W 0
� � Y

2
4

3
5, ð2:6Þ

where R ¼
0 0 2C1b

�Aþ
2

2C1KVþqV �Aþ
2

0 0 0
rV
C1

r�V
C1

0

2
664

3
775, S ¼

sI þ sA 0 0
0 sI þ sA 0
0 0 kM0 �M

C1
þ sV

2
4

3
5 and
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W ¼

�KM0 �M
C1

0 0 0 0 0 0

0 �sF 0 0
rF1
C2

0 0

0 0 �sX 0
rF1
C2

rF1
C2

rF1
C2

0 0 0 � kM0 �M
C1

rT 0 0
KM0 �M
C1

0 0 0 �ðsM þ rTÞ 0 0

0 a @f
@F ðA, F; KF, qÞ �Aþ

2 0 0 0 �ðmþ sA þ aÞ 0

0 a @f
@F ðA, F; KF, qÞ �A�

2 0 0 0 0 �ðmþ sA þ aÞ

2
66666666666664

3
77777777777775
:

Clearly, W has only negative eigenvalues and from (§2.1.2), the eigenvalues of Y also have negative real
part. Thus, the disease-free equilibrium is stable if the eigenvalues of R− S have negative real part. From
[38], the eigenvalues of R− S have negative real part if and only if the spectral radius of the next
generation matrix, RS−1, is less than one. In this case, that radius, which also represents the model’s
basic reproductive number is

R0 ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

2C1b
�Aþ
2

ð2C1KV þ qV �Aþ
2 ÞðkM0 �Mþ sVC1Þ

rV
ðsI þ sAÞ

s
: ð2:7Þ

Note that R0 is unitless. In biological terms, R0 represents the greatest factor by which an initial vector x0
will be amplified after one generation. It is the geometric mean of the infectious cells generated by each
pfu ml−1 of virus after one generation

2C2
1b

�Aþ
2

ð2C1KV þ qV �Aþ
2 ÞðkM0 �Mþ sVC1Þ

, ð2:8Þ

and the concentration of virus generated by each infectious cell after one generation

rV
C1ðsI þ sAÞ : ð2:9Þ

From the expression for R0, we can see how individual mechanisms contribute to resistance to
infection. Resistance can be achieved by (i) augmenting the rates of viral decay and phagocytosis by
resting resident alveolar macrophages, (ii) decreasing the number of susceptible cells, the affinity of
virus for cells, or the number of ACE2 receptors per cell, (iii) reducing the rate of viral production by
infectious cells, and (iv) reducing the lifespan of infectious cells. We note that the rates of viral decay
and phagocytosis are impacted by the body’s innate immune surveillance system. Hence this system
has the capacity to endow resistance. On the other hand, we see that the innate immune response,
which is represented by the variables associated with inflammation, does not influence the stability of
the disease-free equilibrium, as the associated variables and parameters do not impact the model’s
basic reproductive number. Indeed, since the eigenvalues of the matrix associated with inflammation
(W) are negative, the innate immune response does not alter the stability of the disease-free
equilibrium. Importantly, this means that the model does not exhibit runaway inflammation. It does
not, however, mean that the innate immune response is unimportant or ineffective. Indeed, while
unable to alter the stability of the disease-free equilibrium, this response can dramatically alter the
course of infection and/or severity of the endemic equilibrium, by reducing numbers of susceptible
cells (interferon stimulation), reducing viral production rates (interferon stimulation), and increasing
rates of phagocytosis (chemokine-induced recruitment of innate immune cells).

When parametrized as described in §3.1 and appendix A, we find R0 = 2.85, which is similar to the
estimate from [10]. In addition, by evaluating (2.8) and (2.9), we estimate the ability of free virus and
susceptible cells to propagate the infection. We find that each pfuml−1 of free virus produces on
average just 0.72 infectious cells, while each infectious cell produces on average 11.18 (pfuml−1) of
virus. Alternatively, on average, each pfu of virus produces only 0.036 infectious cells. Although our
ordinary differential equation model can only describe the average/deterministic course of infection,
the limited ability of virus to produce infectious cells suggests that when the initial viral load is low,
stochastic effects may prevent the infection from taking root. Hence the model supports the efficacy of
preventative measures aimed at reducing the quantity of virus to which an individual is exposed.

Finally, it is interesting to consider how individual variability can impact the stability of the disease-
free equilibrium, that is, the host’s susceptibility/resistance to infection. Potential sources of variable
susceptibility include variability in the susceptibility of alveolar type II cells to infection, variability of
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Figure 1. Model fit to viral load data. The x-axis is the number of days since the onset of symptoms, and the y-axis is the saliva viral
load (unit is log10 pfu=ml). The dots correspond to the average saliva viral load data of 23 patients in [47]. The curve is the
simulated saliva viral load, where it is assumed that the viral load in the alveolar region is two magnitudes larger than that
in the saliva.
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alveolar macrophage function and variability in lung surfactant. It is uncertain if there exists significant
individual variability in the susceptibility of alveolar type II cells to infection. However, such variability
could result from variable ACE2 expression, if present in a population [39–42]. In our model, changes in
ACE2 expression can impact R0, and hence the stability of the disease-free susceptibility of the host, by
altering the number of susceptible cells in the lung ( �Aþ

2 ) or the number of ACE2 receptors per cell (qV).
Meanwhile, chronic disease and ageing are associated with macrophage defects, including defective
clearance of pathogens [43–45]. In our model, such defects increase the host’s susceptibility by
reducing kM0. Finally, changes in the expression of surfactant proteins [46] could alter host
susceptibility through ρV, which represents the rate of virus decay in the alveolar region. The presence
of SARS-CoV-2 antigens, due to vaccination or previous infection, would also reduce susceptibility
through ρV.

3. Numerical simulations
In this section, we present numerical simulations of the model in Matlab: we estimate a few of the most
uncertain parameters, report model predictions of the innate immune response, and study the impact of
host/pathogen variability and interventions/prophylactics on the course of the infection.

3.1. Model fitting
Here, we fit a small number of the model parameters, namely γ, ρV and T0, to viral load data using a least-
squared error scheme. The data for fitting was sourced from [47], where the saliva viral load of 23
patients was monitored and recorded daily, beginning at the onset of the symptoms. As our model
tracks viral load in the alveolar fluid rather than the saliva, we increase the viral loads in [47] by two
orders of magnitude prior to fitting, to reflect anticipated differences in the viral loads in these two
fluids. In particular, we assume the alveolar viral load is much greater than the saliva viral load as the
saliva is replenished much more quickly than the alveolar fluid. We assume that the infection in the
alveolar region is initiated by a small dose of free virus.

In figure 1, we plot the simulated alveolar viral load data, starting from the initial infections up until
10 days after the onset of symptoms, alongside the scaled empirical data. Our simulations show that the
model provides a reasonable fit of the empirical data. Although the initial dip in the viral load may seem
strange, it is readily explained: this dip occurs because there is a delay of several hours before infected
cells begin to produce new virus. During this time, the concentration of virus falls monotonically due
to thermal inactivation. Moreover, in the absence of adaptive immunity, we predict the viral load will
undergo biphasic decay leading to chronic infection [48].
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All model parameter values (both fit and estimated) can be found in table 2, along with references
and estimated biological range. Initial values are listed in table 3 (the initial values not listed in the
table are zeros).
 lsocietypublishing.org/journal/rsos

R.Soc.Open
Sci.8:
3.2. Dynamics and efficacy of the innate immune response
Next, we examine the model-predicted response to the infection, including the dynamics of the epithelial
cell population (figures 8–10), the levels of cytokines, chemokines and toxins (figure 11), and the infiltration
and activation of innate immune cells (figure 12). We see that a fraction of alveolar epithelial cells are lost to
the infection, this includes a small loss of type I alveolar cells, probably due to exposure to extracellular
toxins. Meanwhile, markers of inflammation, including interferons, chemokines, toxins and activated
innate immune cells show a sharp increase, similar to viral load, before falling to low levels
approximately three weeks post infection. This innate immune response appears sufficient to stymie,
but not eliminate the infection, as is evidenced by the persistence of infectious cells, virus and markers
of inflammation. The endemic equilibrium is characterized by an increase in the total number of innate
immune cells patrolling the alveolar region, a fraction of which remain active. Also, while the total
number of alveolar type I cells partially recovers, it remains beneath the disease-free equilibrium value.
In summary, the model predicts that the innate immune response controls, but does not eliminate the
infection, so that the initial acute phase of infection gives way to a sustained chronic phase of infection.
210090
3.3. Interventions and prophylactics

3.3.1. The impact of interferon treatment on the course of infection

Since SARS-CoV-2 has multiple mechanisms to counter the production of interferons [36,37], and
interferon-stimulated infectious cells produce significantly less virus than untreated ones, interferons
have been proposed as a possible drug therapy for the disease [89,90]. In this set of simulations, we fix
the parameter values from the first simulation but increase the concentration of type I interferons in the
alveolar region by a fixed amount. We consider two treatment schedules, where treatment is adopted at
day 1 or 3, and two treatment levels, where the concentration of type I interferons is increased by 10%
or 20% of the half saturation constant for the antiviral interferon response (KF). Looking at figure 2,
we see that all treatments can effectively reduce the viral load; however, the high-dose treatments
(ΔF = 0.2 KF) are more effective at reducing viral loads than lower-dose treatments (ΔF = 0.1 KF).
Although the timing of treatment initiation does not significantly impact the ultimate reduction in the
viral load, early treatment has the potential to limit the size of the infection (figure not shown).
Unfortunately, interferon treatment also limits the ability of the alveolar epithelium to heal (see
figure 2). As a result, it may be necessary to limit the duration of interferon treatment. In short, while
interferon treatment can be beneficial early in the infection, it may be detrimental at latter stages of
infection when the lung is attempting to regenerate. Because such limited treatment may be insufficient
to eliminate the infection, our results suggest that, at least in that absence of additional adaptive
immune responses, interferon treatment is not a feasible stand-alone therapy. Instead, interferon
treatment may offer a means of potentiating the effects of other therapies.
3.3.2. The impact of antiviral treatment on the course of infection

Multiple antiviral drugs are in clinical trials for the treatment of SARS-CoV-2 [91]. In [92], the authors
studied the in vitro antiviral activity of chloroquine and hydroxychloroquine for SARS-CoV-2 and
found the in vitro antiviral EC50 of these drugs to be 5.47 and 0.72 μM, respectively. In [93], the
authors tested the effectiveness of seven drugs and found the in vitro EC50 of remdesivir and
chloroquine to be 1.13 and 0.77 μM, respectively. The lung pharmacokinetics in [94] show that
different remdesivir doses lead to drug concentrations between 0.5 and 5 μM, with a drug half-life
about 3 h. Clinical trials showed that patients treated with hydroxychloroquine did not have lower
death rates than those who received the standard care [95] while remdesivir treatment was found to
have limited benefit [93,96]. In this set of simulations, we fix the parameter values from the first
simulation, except the production rate of virus is reduced to represent the impact of antiviral drug
therapy. In particular, we simulate the effectiveness of antiviral drug therapies which can reduce the
viral production rate by 50% or 90%. For simplicity, we assume that the effect of antiviral drug
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Table 3. Baseline initial values.

parameter symbol value

type I alveolar cells A1 1:96� 1010 cells

type II alveolar cells expressing ACE2 Aþ2 5%� 3:29� 1010 cells

type II alveolar cells not expressing ACE2 A�2 95%� 3:29� 1010 cells

inactivated immune cells M 5:99� 109 cells

concentration of free virus V 200 pfu ml−1
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Figure 2. The impact of interferon treatment on the course of infection. The x-axis is the number of days since the onset of
symptoms. The y-axis on the left is the viral load (unit is log10 pfu ml

−1), and the y-axis on the right is the number of
healthy type II alveolar epithelial cells (Aþ2 þ A�2 þ Aþ�

2 þ A��
2 ). The solid curves on the left and right show the viral load

and the number of A2 cells from the first simulation with no treatment, respectively; the dashed curves on the left and right
show the viral load and the number of A2 cells with four different interferon treatment strategies, respectively.
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therapy is constant and immediate. We also simulate two treatment schedules, where treatment is
initiated at day 1 or 3.

In figure 3, we see that a 90% reduction in the rate of viral production effectively reduces the viral load
in the alveolar region, while a 50% reduction in the rate of viral production has little impact on the long-
term viral load, regardless of treatment timing. All treatments improve the ability of the alveolar epithelium
to heal. However, while treatment that reduces viral production rates by 90% largely eliminates the
infection and enables epithelial type II cells to return to pre-infection levels, antiviral treatment leading
to a 50% reduction in viral production is of limited benefit. Treatment timing does not significantly
impact the ultimate effectiveness of antiviral treatment; however, earlier treatment has greater potential
to limit the number of cells infected and reduce the severity of tissue damage.

3.3.3. The impact of initial viral load on the course of infection

Preventative measures, including face masks and hand washing, can reduce the initial viral load. In the
previous simulations, we took the initial concentration of the virus to be 200 pfuml−1. From figure 4, we
see that when the initial viral load is increased by one order of magnitude the time it takes for the viral
load to peak decreases by 1–2 days. However, the initial viral concentration has no impact on the peak
viral load. Hence, in our model, the initial viral load predominantly impacts the time at which peak viral
load is reached. We reiterate, however, that very low initial viral loads can be subject to stochastic effects
that are not captured by this model.

3.4. Pathogen and host variability

3.4.1. The impact of ACE2 expression on the course of infection

Next, we study the impact of the percentage of ACE2+ cells on the course of the infection. On average, we
assumed that 5% of alveolar type II cells are ACE+ and thereby susceptible to virus infection. From
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Figure 3. The impact of antiviral treatment on the course of infection. The x-axis is the number of days since the onset of
symptoms. The y-axis on the left is the viral load (unit is log10 pfu ml

−1), and the y-axis on the right is the number of
healthy type II alveolar epithelial cells (Aþ2 þ A�2 þ Aþ�

2 þ A��
2 ). The solid curves on the left and right show the viral load

and the number of A2 cells from the first simulation with no treatment, respectively; the dashed curves on the left and right
show the viral load and the number of A2 cells with four different antiviral drug therapy strategies.
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figure 5, we can see that if instead 10% of the type II cells are ACE+, the viral load is about one order of
magnitude larger and peaks about 5 days earlier. On the contrary, if only 2.5% of cells are ACE+, then it
takes much longer for the viral load to peak. Finally, if only 0.5% of cells are ACE+, the infection does not
take hold. Hence, in addition to potentially preventing SARS-CoV-2 infection by reducing the value of R0

below one, the percentage of cells that are susceptible to infection has a significant impact on the course
of the illness.
3.4.2. The impact of epithelial-cell interferon production on the course of infection

Since SARS-CoV-2 has evolved mechanisms for inhibiting interferon (IFN) production, and some
research suggests that select immune cells are specially equipped to produce type I interferons [74],
our baseline simulation neglected epithelial-cell IFN production. However, since SARS-CoV-infected
alveolar epithelial cells were found to produce type I IFN mRNA in vitro, and individual differences
in IFN signalling may partially explain variability in the severity of COVID-19 symptoms [97–99], it is
interesting to consider how epithelial-cell IFN production may impact the course of infection. Figure 6
shows that epithelial-cell IFN production results in a significantly faster IFN response and a marginal
increase in maximal IFN levels. Moreover, epithelial-cell IFN production appears more effective at
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preserving the population of alveolar type II cells than IFN treatment. Thus, our simulations support the
idea that defective or delayed IFN signalling worsens prognosis.
3.4.3. The impact of spike protein:ACE2 binding affinity on the course of infection

Although it is difficult to precisely quantify the affinity of the full-length spike protein for the ACE2
receptor in vivo, research suggests this quantity may vary significantly (almost fivefold) between the
B.1.351 SARS-CoV-2 strain and the strain first identified in Wuhan [100]. This change in affinity is
driven by mutations within the spike protein. These include the substitutions D614G, found in
variants Alpha, Beta, Gamma and Delta, and N501Y, found in Alpha, Beta and Gamma. Both of
which have been shown to enhance binding of the spike protein to ACE2 in vitro and in animal
models [101,102]. Hence, we investigate how the affinity of the SARS-CoV-2 spike protein for the
ACE2 receptor shapes the course of the infection. Figure 7 shows that a fivefold increase in affinity
results in a faster more destructive infection. Specifically, with a fivefold increase in affinity, tissue
damage occurs several days earlier, and healthy alveolar type II cell numbers are approximately 40 or
20% lower in the acute and chronic phases of infection, respectively. Meanwhile, a twofold decrease in
the spike protein:ACE2 binding affinity results in a relatively slow-moving, mild infection, with
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limited cell damage. Interestingly, in the chronic phase of infection, the viral load is very similar for all
three affinities tested. Similar to our result, previous research on a SARS-CoV-2 strain carrying a D614G
spike protein mutation found this strain is more efficient at infecting some human cell lines; however, this
increased infectivity did not translate to higher viral loads in the hamster lung [101]. In summary, our
results support the idea SARS-CoV-2 strains with enhanced spike protein:ACE2 binding affinities have
the potential to produce more severe lung pathologies irrespective of any other genetic changes they
might carry.
4. Summary
Here, we have developed a differential equation model to study the innate immune response to SARS-
CoV-2 within the alveolar epithelium. We have considered numerous variables that are probably critical
determinants of the viral dynamics and the host response, including type I and type II alveolar epithelial
cells, interferons, chemokines, toxins and innate immune cells. Important factors and mechanisms,
including the percentage of ACE2+ cells, differentiation and proliferation of alveolar epithelial cells,
and tissue damage by toxins, are also described. We have characterized the model steady states and
basic reproductive number, estimated most model parameters from the biological literature, and
compared the model output with human viral load data. Below we summarize our major
contributions and conclusions.

Our model of the alveolar epithelium includes type I and type II alveolar epithelial cells, is
parametrized from available biological literature, and accounts for the proliferation and differentiation
of alveolar type II cells. We find that the model has a positive steady state which is stable provided
that: (i) proliferation occurs on a faster time scale than differentiation and (ii) proliferation is more
sensitive to cell death than differentiation. In the future, this model can provide a useful basis for
mathematical investigations of the alveolar epithelium in health and disease.

We have developed and parametrized a model of the innate immune response to SARS-CoV-2
infection in the alveolar epithelium and characterized the model’s basic reproductive number/stability
of the disease-free equilibrium. We estimate the reproductive number to be 2.85, which is similar to
that estimated elsewhere [10]. Importantly, we have further decomposed the reproductive number in
order to characterize the average number of infectious cells produced by one viral pfu and the
average number of viral pfu produced by one infectious cell. We find a single viral pfu produces on
average much less than one infectious cell. In fact, just 0.036 infectious cells. Hence, low initial viral
loads are unlikely to initiate infection in the presence of stochasticity.

Fitting the model to viral load data, we then simulated the infection over an extended period of time
to characterize the dynamics and efficiency of the innate immune response. We found that the model
converges to a positive endemic equilibrium, which means that, as parametrized, the innate immune
response is insufficient to clear the infection. The endemic equilibrium is characterized by partial
recovery of the alveolar epithelium, low numbers of infectious cells, and persistent inflammation.
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We also studied the impact of interventions and prophylactics on the course of the infection. Our
simulations show that interferon therapy (at both dosage levels considered) significantly reduces the
viral load, although the higher dose has greater effect. However, interferon therapy also limits the
ability of the alveolar epithelium to heal. Our results suggest that interferon treatment is best
administered at low doses and over short intervals of time in combination with other therapies. By
contrast, our simulations show that antiviral treatment, while less effective at reducing viral load, can
limit the extent of tissue damage. In particular, antiviral treatment that reduces the rate of viral
production by 90% effectively controls the infection and enables epithelial cell numbers to return to
pre-infection levels. However, treatment that results in a 50% reduction in the rate of viral production
has only limited benefit. By contrast, our model predicts that reducing the initial viral load, for
example through prophylactic measures like mask usage and hand washing, only impacts the
duration of the asymptomatic period. However, this prediction is subject to the caveat that very small
initial viral loads are probably subject to stochastic effects, which are not described in this model.

Finally, we studied the impact of host and pathogen variability on the course of the infection.
Simulations showed that, in addition to impacting the stability of the disease-free equilibrium and
basic reproductive number, the percentage of ACE2+ cells has a dramatic impact on the course of
infection, with higher percentages resulting in earlier and larger peak viral loads coupled with
increased cell death. Variations in the rate of production of type I interferons by alveolar epithelial
cells and the affinity of the SARS-CoV-2 spike protein for the ACE2 receptor had similarly dramatic
effects on the course of infection. In summary, the model predicts that individual differences between
patients and viral strains can significantly alter the prognosis.

Although our model incorporates many important features of SARS-CoV-2 infection within the
alveolar epithelium and is based on current biological knowledge, it is also limited. Indeed,
investigations into the within-host mechanisms of SARS-CoV-2 are ongoing and can inform future
improvements to the model. For example, the precise function of ACE2 signalling and interferon
signalling for proliferation, infection and healing, including potential cross-talk between signalling
pathways, remains to be elucidated. For the time being, our model only considers ACE2 expression as
a determinant of susceptibility; however, it may also be important for healing [103]. In addition,
known features of the system have been neglected or simplified in constructing this model. For
example, we did not explicitly model the antiviral activities of the complement system, or the effect of
fever, which could both lead to dynamic changes in the rate of viral decay. Instead, we have focused
on the dynamic regulation of viral load by innate immune cells. Similarly, the model is only intended
to describe the innate immune response; the adaptive immune response is neglected. And, as with
most mathematical models of biological systems, the parameters are uncertain. Indeed, parameter
estimates are based on a variety of publications and model systems, and frequently require
extrapolation to the human alveolar epithelium. Also, when modelling the impact of drug therapy,
there are probably additional side effects that are not represented in the model. Moreover, it is
important to acknowledge that parameter values may vary significantly from individual to individual.
For example, the total number of cells, the percentage of ACE2 positive cells, and the production and
clearance rates of interferons and virus may be very different for different individuals [104]. Finally,
the model is limited by its medium, as differential equations necessarily portray an average view of
reality that does not account for discrete quantities or chance.

Despite these limitations, we have assimilated a considerable amount of current biological knowledge
into a mathematical model that can be useful for assessing our understanding of SARS-CoV-2 infection,
generating predictions regarding the efficacy of treatments, and identifying factors that influence the
probability and severity of SARS-CoV-2 infection.

Data accessibility. Data and relevant code for this research work are stored in GitHub: https://github.com/rnleander/
Within-host_SARS-CoV-2.git and have been archived within the Zenodo repository: 10.5281/zenodo.511043.
Authors’ contributions. R.N.L. developed and parametrized the model, characterized the model steady states and basic
reproductive number, assisted with numerical simulations and the generation of figures, and wrote and edited the
paper. Y.W. developed and parametrized the model, characterized the model steady states and basic reproductive
number, procured data for model fitting, wrote the code to numerically simulate the model and generate figures,
and wrote and edited the paper. W.D. helped to develop and parametrize the model, verified the model basic
reproductive number and edited the paper. D.E.N. helped develop and parametrize the model and helped to write
and edit the paper. Z.S. helped to develop and parametrize the model, helped with numerical simulations and
edited the paper.
Competing interests. We declare we have no competing interests.
Funding. No funding has been received for this article.

https://github.com/rnleander/Within-host_SARS-CoV-2.git
https://github.com/rnleander/Within-host_SARS-CoV-2.git
https://github.com/rnleander/Within-host_SARS-CoV-2.git
http://dx.doi.org/10.5281/zenodo.511043


royalsocietypublishing.org/journal/rsos
R.Soc.Open

Sci.8:210090
19

 D
ow

nl
oa

de
d 

fr
om

 h
ttp

s:
//r

oy
al

so
ci

et
yp

ub
lis

hi
ng

.o
rg

/ o
n 

22
 A

ug
us

t 2
02

1 
Appendix A. Model details and parametrization

A.1. Parameters describing the demographics of alveolar epithelial cells

Alveolar epithelial cells are long-lived. The lifespan of the alveolar epithelial type I cell is reported to be 120
days [49]. Wewere unable to find estimates of the lifespan of the alveolar type II cell. However, as the average
half-life of a ciliated lung epithelial cell is 17 months [105], we expect alveolar epithelial type II cells to be
long-lived. For simplicity, we suppose type I and type II cells have equal lifespans and choose σA = 1/
120 d−1 = 0.00035 h−1.

According to [58], a single human lung contains on average �A1 ¼ 19 600+ 9000� 106,
�A2 ¼ 32 900+ 13 600� 106 and �M ¼ 5990+ 1900� 106 type I cells, type II cells and alveolar
macrophages, respectively; the total number of cells in the alveolar region of a lung is then 184 000 ±
65 000 × 106. Alveolar type II cells replenish the lung by proliferating and differentiating into type I
cells [55,106]. We estimate the per capita rate at which alveolar type II cells differentiate into alveolar
type I cells at steady state as

a ¼ sA �A1
�A2

¼ 0:00021 h�1:

The rate of differentiation, a (as well as the rate of proliferation, r2) should increase in response to
injury in order to maintain oxygen exchange. Hence we model the rate of differentiation as

a ¼ d 1�
�A1

KA1

� �
,

where δ is the maximal average rate of proliferation and KA1 determines the fraction of type II cells that
actively differentiate, given the current number of type I cells. The rate of differentiation in the rat lung
post lipopolysaccharides (LPS)-induced injury was quantified in [55]. Here differentiated cells were
observed 7 days post injury. Hence, we take

d ¼ 1
7�24 h�1 ¼ 0:006 h�1:

KA1 can then be estimated as

KA1 ¼
�A1

1� ða=dÞ ¼ 20:32� 104 106cells:

Note this implies approximately 3.5% of type I cells are in the process of differentiating into A1 cells at
steady state. While this number seems high given data from [55], it accurately captures the steady-state
population structure.

Evidence suggests that alveolar type II cells are not uniformly susceptible to coronavirus infection
[57]. In particular, only a fraction of these cells express receptors that enable infection by SARS-CoV-2
[30]. Hence, we let A2

+ denote type II cells that are susceptible to infection and A2
− denote cells that are

immune to infection. We assume cells transition from the immune to susceptible class through
increased expression of cell surface receptors such as ACE2 at a rate a2

− and move from the susceptible
to immune class through decreased expression of these receptors at a rate a2

+, where

a�2 ¼ gpþðaþ sAÞ

and

aþ2 ¼ gð1� pþÞðaþ sAÞ:

It follows that when the structure of the A2 cell population equilibrates a fraction, p+, of these cells will be
susceptible to SARS-CoV-2 infection.

Estimates of the fraction of alveolar type II cells that express ACE2 are typically low, ranging from 1 to
7% [24,56]. Hence, we take p+ = 0.05. However, an in vitro study of SARS-CoV-1 infection of type II cells
suggests that ACE2 expression and susceptibility are highly variable in vitro. In particular, the fraction of
cells infected with SARS-CoV-1 in this study, which provides a lower bound for the susceptible fraction,
varied between approximately 3 and 34%. Hence we take ∈ [0.01, 0.3] as the range of physiological
values for p+. The factor γ determines the rate at which the ACE2-expression structure of the
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population equilibrates relative to the lifespan of a type II cell. We fit γ = 1, and this gives aþ2 ¼ 5:3� 10�4

and a�2 ¼ 2:8� 10�5.
In the healthy lung, only a small fraction of alveolar type II cells are actively proliferating at any one

time (see ([20], fig. 1e), ([21], fig. 3k), and [54]). Assuming 1% of cells are proliferating, which means

1�
�A1 þ �A2

KA
¼ 1%:

Then we can estimate KA by

KA ¼
�A1 þ �A2

1� 0:01
¼ 5:3� 104 106cells:

Moreover,

r2 ¼ dþ sA

1�
�A1 þ �A2

KA

¼ 0:055 h�1:

Note this gives an average cell cycle time of 18 h, which is somewhat shorter than that previously
estimated (22 h), but biologically feasible, given the duration of synthesis phase (S) through mitosis
phase (M) is approximately 9 h [54].
8:210090
A.2. Parameters describing the demographics and actions of alveolar macrophages
and infiltrating immune cells

Our model includes both resting and active innate immune cells. We focus our attention on macrophages
and neutrophils, where alveolar macrophages are imagined as the predominant phagoctye in the resting
lung and neutrophils the predominant phagocyte during the early stages of infection. Since our model
only distinguishes between innate immune cells in terms of their activation status, parameters
describing resting immune cells are informed by studies of alveolar macrophages, while parameters
describing active immune cells are informed by studies of neutrophils. However, in some cases,
parameter values will be adjusted to reflect the expected ratio of these two cell types.

The lifespan of a human alveolarmacrophage is estimated to be 81 days [107]. This gives σM = 1/81 d−1 =
0.0005 h−1. Since these cells are thought to be long-lived [108], we take sM [ ½0:0001, 0:0005� h�1. There is
considerable debate as to the lifespan of neutrophils within the blood and tissue, with some sources
placing this number of the order of hours and others of the order of days [53,109]. Moreover, evidence
suggests that multiple factors can alter the lifespan of a neutrophil in the context of infection [53]. Despite
this complexity, it seems reasonable that, in the interest of limiting tissue damage [110] and in light of the
tremendous number of neutrophils generated each day [53], activated neutrophils should not be long-
lived. Hence, we assume that on average neutrophils undergo apoptosis within 2 days of activation, and
set s�

M ¼ 1=2 d�1 ¼ 0:02h�1 with s�
M [ ½0:008, 0:05� h�1.

The recruitment rate of alveolar macrophages into the healthy lung can be estimated as

rM ¼ sM �M ¼ 3 106 cells h�1,

with rM∈ [0.6, 3] 106 cells h−1.
Insight into the rate of infiltration by innate immune cells in response to inflammation is provided by

[59], where the concentration of macrophages and neutrophils in bronchoalveolar lavage (BAL) is
measured post LPS challenge. Here, the initial concentration of macrophages was 5 × 104 macrophages
ml−1, while neutrophils were effectively absent. While neutrophil levels rapidly increased to a
maximal concentration of approximately 25 × 104 neutrophils ml−1 by day three, the macrophage
response was significantly delayed. As we are interested in modelling the earliest stages of infection,
our model of immune cell recruitment into the alveolar region is based on the increase in neutrophils
observed in this study. In order to relate the concentration of cells in the BAL to the number of cells
in the alveolar region, we roughly estimate that a concentration of 104 cells per ml in the BAL from
this study corresponds to a total of 1000 million cells in the lung. This conversion is based on the
initial concentration of macrophages in the BAL [59] and the reported number of alveolar
macrophages in the lung [58]. Hence, 25 000 million immune cells are expected to be recruited to the
lung over a 3-day period. Meaning that r�M � 350 106 cells h�1:

Infiltrating immune cells, such as macrophages and neutrophils, remove infectious cells and viral
particles via efferocytosis and endocytosis/phagocytosis, respectively [111,112]. We were unable to



royalsocietypublishing.org/journal/rsos
R.Soc.Open

Sci.8:210090
21

 D
ow

nl
oa

de
d 

fr
om

 h
ttp

s:
//r

oy
al

so
ci

et
yp

ub
lis

hi
ng

.o
rg

/ o
n 

22
 A

ug
us

t 2
02

1 
find measurements of the per capita rate at which macrophages ingest infectious cells. A reasonable
approximation is offered by the rate at which macrophages engulf apoptotic neutrophils, which was
quantified as a mass action process in [69], with a second-order rate constant of 0:54 ml=106cells h for
resting macrophages and 2:4 ml=106cells h for activated macrophages.

Clearance of SARS-CoV-2 by professional phagocytes is not well characterized. However, in vitro
studies suggest that human macrophages can help to clear SARS-CoV-1 [113,114]. In particular, these
cells were observed to phagocytose SARS-CoV-1 virons [113] and were found to be largely refractory
to SARS-CoV-1 infection, producing little to no viral progeny post infection [113,114], while mounting
a robust inflammtory reponse [114,115]. An estimate of the second-order rate constant at which innate
immune cells clear SARS-CoV-1 virons is given by the in vitro rate at which neutrophils clear
Staphylococcus epidermidis, 1:2 ml=106 cells h [116]. This value seems reasonable, as it is on the same
order of magnitude as the rate of macrophage efferocytosis.

When extrapolating in vivo clearance rates from in vitro data, we must consider how the surface to
volume ratio varies between the in vitro and in vivo conditions. This ratio can impact the rate of
phagocytosis/efferocytosis since phagocytes are expected to crawl along the epithelial surface. For
example, in [69], adherent macrophages were cultured in 0.5 ml wells with apoptotic cells. Assuming
a well surface area of 0.7 cm2 [117], the surface to volume ratio is approximately 1.4 cm2 per ml,
which yields a two-dimensional, second-order rate constant for efferocytosis of 0:8 cm2=106 cells h, for
resting macrophages and 3:4 cm2=106 cells h for active macrophages. This two-dimensional rate
constant is consistent with the reported diffusion coefficient for the macrophage: 11 μm2 min−1 =
0.66 × 10−9 m2 h−1 [118]. In particular, given this diffusion rate, 106 macrophages would be expected to
cover approximately 0.66 × 10−3 m2 h−1 = 6.6 cm2 h−1, giving a two-dimensional second order rate
constant for clearance of 6:6 cm2=106 cells h: Now the alveolar surface is covered by a very thin layer
of fluid, in which we expect viral particles to be suspended. The volume of this fluid (both lungs) is
estimated at about 40 ml [32]. Meanwhile the surface area of the alveolar region is about 100 m2

[32,58]. Thus, the ratio of surface area to volume in the alveolar region is of the order of 104 cm2 ml−1.
A two-dimensional rate constant of 1–10 cm2=106 cells h then translates to a three-dimensional
constant of about 10�4–10�3 ml=106 cells h in the alveolar region of the lung. In light of these
considerations, we take the second order rate constants for clearance of dead cells and virus by resting
and active innate immune cells as kM0 ¼ 10�4 ml=106 cells h and kM ¼ 3� 10�4 ml=106 cells h,
respectively.
A.3. Parameters describing viral dynamics

There exist a number of papers providing insights into the kinetics with which SARS-CoV-2 induces
epithelial cells to produce new virons [60–62,68,90]. A potential limitation of this data is that it is
usually derived from the infection of Vero cells, as opposed to alveolar type II cells. Evidence suggests
that in vitro SARS-CoV-2 induced cells to release new virons into the extracellular space within 6 h of
infection [60,61] (see figure 2a,b and figure 2a, respectively). In this regard, SARS-CoV-2 appears to be
similar to SARS-CoV-1 and vesicular stomatitis virus (VSV) [119,120]. Although viral replication is a
multi-step process, consisting of viral entry, viral replication, and viral release [62], our simple model
describes the replication cycle as a single step, so that cells move directly between the susceptible and
infectious class. We select parameters such that the maximal possible rate of transition between these
two states is β = 1/6 h−1, which means that, on average and in the presence of saturating concentrations
of virus, 6 h will elapse between exposure to the virus and the release of new virus.

Once virus is introduced into the alveolar region, a fraction of cells will become infectious. This
infection process begins with the interaction between the virus spike protein and the host cell’s ACE2
receptor. As virus-cell contact and viral entry occur on faster time scales (of the order of seconds or
minutes [62,121]) than viral replication and egression, we assume the fraction of cells that are
transitioning to an infectious state is at instantaneous equilibrium with the concentration of virus and
susceptible cells in such a way that the transition rate saturates as the fraction of receptors in complex
with viral spike protein approaches one. Specifically, we assume that saturates as

f ðAþ
2 , V, KV ,

qV
C1

Þ ¼ V
V þ qVðAþ

2 =2C1Þ þ KV
, (A 1Þ

where qV =NR/NS, NR is the number of ACE2 receptors per cell, NS is the number of viral spike proteins
and C1 is the volume of the alveolar fluid. In addition, KV =KAI/NS, where KAI is the dissociation constant
for the SARS-CoV-2 spike protein-ACE2 receptor.
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Estimates of the dissociation constant for the SARS-CoV-2 spike protein receptor binding domain
(RBD)-ACE2 receptor complex vary widely with experimental method. Estimates range from 1 to 403
nM, [100,122–124] or 0.602− 241.88 × 1012 particles ml−1. It is suggested that the affinity of the full
spike protein trimer for the ACE2 dimer could be even greater [123]. Hence, we select a low-value
KAI ¼ 1� 105 106 particles ml�1 in order to parametrize the model. After the other parameters are
estimated, we will vary this value between ½0:2� 105, 2� 105� 106 particles ml�1 to reflect variability
between SARS-CoV-2 strains. We assume approximately 100 spike proteins per viron/ACE2 receptors
per alveolar type II cell, i.e. NR =NS = 100. This gives KV ¼ 1� 103 106 pfu h�1 and qV = 1.

We are unable to find single-cell analysis of SARS-CoV-2 production rates; however, estimates from other
infections are available. It is important to note that replication rates can vary across a population and
throughout the infectious period by several orders of magnitude. For example, single cell replication rates
for vesticular stomatitis virus can vary between 10 and 3000 pfu h−1 [119]. Similarly, infectious cells were
found to produce between 1 and 970 pfu 12 h post influenza A infection (H1N1 A) [65], which
corresponds to average per capita production rates of 0:083–80:83 pfu h�1 cell: As H1N1 and SARS-CoV-2
are both respiratory viruses, H1N1 plaque production rates may provide a reasonable estimate of SARS-
CoV-2 production rates. For example, H1N1 and SARS-CoV-2 were found to replicate with similar
dynamics in lung tissue [64].Hencewe initiate rV ¼ 10 pfu h�1 cell, and use viral loaddata to fit ρV in [1, 100].

SARS-CoV-2 has been reported to have a half-life about 1–7 h on surfaces at 21−23°C and 40–65%
relative humidity [62,63]. On the other hand, from supplementary fig. 2 of [64], we estimate the rate
of thermal inactivation during in vitro culture at 37°C to be 0.1–0.2 h−1. Hence, we set σV = 1/3 h−1

with sV [ ½0:1, 1=3� h�1:

A.4. Parameters describing the dynamics and actions of cytokines and chemokines

Generally speaking, cytokines and chemokines have short half-lives [125]. For example, in plasma the
half-life of CXCL10, which may be involved in the pathogenesis of COVID-19 [126,127], may be less
than 5 min [85]. It is important to note, however, that such estimates may vary with experimental
methods, including the route of administration, method of quantifying decay and context (e.g. in vitro
versus in vivo). Furthermore, factors expressed on the cell surface and extracellular matrix specifically
extend the half-life of chemokines within inflamed tissues [84–86]. In the light of these considerations,
we take the rate of decay of chemokines as σX = 1 h−1, with σX ∈ [0.5, 2], so that these proteins last on
average 0.5 to 2 h in the alveolar region.

The half-lives of type I interferons (e.g. IFN-α and IFN-β) may be somewhat longer than those of other
cytokines. For example, [77] places the half-life of IFN-α at 4–16 h and the half-life of IFN-β at 1–2 h [77].
Alternatively, [128] reports the half-life of IFN-β as 5 h. We set the decay rate of interferons to be σF = ln2/
2 = 0.35 h−1 (i.e. the half-life is 2 h) with sF [ ½0:04, 0:69� h�1.

In vitro experiments suggest that the anti-viral effects of interferon stimulation last approximately 7–
10 days in the context of SARS-CoV-2 infection [67]. Therefore, we assume cells leave the interferon-
stimulated class at a rate of μ = 1/8.5 d−1 = 0.005 h−1 with m [ ½0:004, 0:006� h�1.

We use data from [76] for estimating the average rate of IFN-β production in a human alveolar
epithelial cell line (A549). Specifically, IFN-β levels were observed to peak approximately 16 h post
infection at 21 000 pg ml−1. Since the cell density was 0:25� 106 cellsml�1 and IFN− β is
2:7� 108 Umg�1 [75], we estimate an average IFN− β production rate post-infection to be
525 pg=106 cells h�1 � 142 U=106 cells h�1. Select immune cells may produce type I IFNs at a greater
rate. For example, dendritic cell precursors were found to produce type I IFNs at an average rate of
approximately 1 U/cell/day [74]. We note, however, that because these cells represent a small fraction
of total peripheral blood mononuclear cells (PBMC), the average per capita production rate of this cell
population was only about 1:2� 10�3 U=cell=day or about 0:05� 10�3 U=cell h�1. In our model
equations, we will measure type I interferons in pmol. We set the rate of production by the mixed
innate immune cell population as rF1¼ 0:05 103 U=106 cell h: Meanwhile, the rate of production by
epithelial cells is rF2¼ 0:142 103 U=106 cell h. Assuming the type I interferon is IFN− β,
2:7� 108 Umg�1 (with a range of 2:70–4:00� 108 U mg�1 IFN-β) [75,129], and a molecular mass of 18
kDa [75], we have rF1¼ 0:01 pmol=106 cell h, and the rate of production by epithelial cells would be
rF2¼ 0:03 pmol=106 cell h.

Per cell cytokine production rates vary with cytokine and cell type over a range of approximately
0:1–100 molecules=cell s�1 [70]. Hence we fix ρX = 0.006 with rX [ ½0:0006� 0:6� pmol=106 cell h�1:

Several studies have characterized the kinetics of the antiviral response to interferon stimulation. It
seems this response is rapid and robust, with cells achieving an antiviral state within approximately



royalsocietypublishing.org/journal/rsos
R.Soc.Open

Sci.8:210090
23

 D
ow

nl
oa

de
d 

fr
om

 h
ttp

s:
//r

oy
al

so
ci

et
yp

ub
lis

hi
ng

.o
rg

/ o
n 

22
 A

ug
us

t 2
02

1 
two hours of signalling and in response to pico-molar concentrations of type I interferons [130,131],
alternatively, to concentrations as low as 1 Uml−1 of antiviral cellular secretions [76]. Moreover, [90]
supports the idea that SARS-CoV-2 is an ‘interferon-sensitive’ virus, similar to VSV. Our estimates of
the parameters that determine the rate at which cells transition to an antiviral state are informed by
[76], where the timing of the antiviral response was measured in the context of VSV infection. We
assume that at the maximal rate of transition (i.e. at the rate achieved post stimulation with saturating
concentrations of type I IFNs), approximately 70% of cells will achieve an antiviral state within 2 h of
stimulation. This gives α = 0.6 h−1, and is roughly consistent with fig. 5A of [76].

The fraction of cells that are transitioning to an antiviral state is modelled as

f ðA, F; KF, qFÞ ¼ F

Fþ qF
A
2
þ KF

,

where A is the total concentration (in pM) of alveolar cells that are not yet stimulated by interferons. That
is, A ¼ ðAþ

2 þ A�
2 þ A1 þ IÞ=C1ð10�2=6:02Þ, where 10−2/6.02 is the conversion factor, converting units of

106 cellsml�1 to pM.
In order to estimate the parameters KF and qF, we first note that in vitro, where the cellular

concentration is very low, the IFN concentration at which the antiviral response is half-maximal
(antiviral EC50) is probably determined by the dissociation constant between the IFN protein and
receptor. In vitro, the antiviral EC50 of type I interferons is extremely small. According to one source,
it is of the order of just 1 U ml−1 [90,132]. Another source has the antiviral EC50 of IFN-α as
approximately one picomolar and that of IFN-β as a fraction of a picomolar [130]. However, the
dissociation constants between IFN-α or IFN-β and the IFN receptor (KFR) are considerably larger;
KFR = 0.4–5 nM for IFN-α and KFR = 0.1 nM for IFN-β [130], i.e. EC50 < <KFR. We interpret this to mean
that the in vitro antiviral response is hypersensitive. Hence, it may be that the antiviral response rate
is also hypersensitive, i.e. that KF < <KFR. On the other hand, the antiviral EC50 is typically measured
as an endpoint assay performed several hours post stimulation, for example, by measuring the
fraction of cells that are protected from the cytopathic effects of infection. As such, the empirical
antiviral EC50 may differ from KF, which is the concentration at which the rate of transition to the
antiviral state is half maximal. In agreement with this idea, fig. 5 of [76] indicates that in vitro the rate
at which cells transition to an antiviral state is not yet saturated with respect to IFN− α at a
concentration of 64 U ml−1, so that an antiviral EC50 of the order of 100 Uml−1 would seem
reasonable for the response rate. While this value is greater than the anitviral EC50 determined by
cytopathic effect, it is similar to the dissociation constants between IFN and IFN receptor reported
above. In light of these considerations, we let KF ¼ 100 pM. Finally, assuming that cells typically
express only a small number of interferon receptors, and that limited receptor engagement is required
to transduce the antiviral response, we set qF = 40 [130].

Research on SARS-CoV-1 suggests that post SARS-CoV-2 infection alveolar type II cells and immune cells
produce chemokines (e.g. CCL2 and CXCL10), thereby attracting additional immune cells to the site of
infection [57,114,115]. We assume the concentration of chemokine required to induce a half-maximal
chemotactic response (EC50) is of the same order of magnitude as the dissociation constant for chemokine
and chemokine receptor/chemokine-receptor-expressing cells. Indeed, this appears to be the case for CCL2
and monocytes in vitro, where the dissociation constant is 0.77 nM and the EC50 for chemotaxis is 0.5 nM
[71]. Meanwhile, CXCL10 was found to bind to its receptor, CXCR3, with a dissociation constant of 0.2–
0.3 nM [73], and CCR1, another chemokine receptor, was found to bind its ligands with dissociation
constants ranging from 70 pM to 2 nM [72]. In light of this data, we set KX ¼ 500 pM. Our approach
to modelling the chemotactic response is different from that used to model the transition to the antiviral
state. In particular, as the concentration of leukocytes in the blood is several orders of magnitude lower
than the concentration of epithelial cells in the alveolar region (being of on the order of just
106–107 cells ml�1 [116]), and hence, several orders of magnitude lower than the dissociation constants
between chemotaxis receptors and ligands, we assume that the dissociation constant is the primary
determinant of the saturation of the rate of chemotaxis, and model the rate of chemotaxis as ρX g(X; KX).
A.5. Parameters describing the production and actions of toxins

Infiltrating immune cells are a potential source of inflammation in the context of SARS-CoV-2 infection.
In particular, these cells promote inflammation by releasing cytokines and toxic antimicrobial substances
(e.g. histones and oxidants) into the extracellular space [33,34,81,133]. Neutrophils, in particular, are
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known to release toxins through both degranulation andNETosis [34], the latter ofwhich is the expulsion of
neutrophil extracellular traps (NETs) including tissue-damaging histones and proteases [81,109].
NETs may trap, neutralize, or destroy pathogens [81,109]; however, NETs may also damage host cells
[81,133–135]. Indeed, NETs have been shown to induce apoptosis of epithelial cells [136] and promote
thrombus formation, which may result in tissue damage [135]. Multiple modes of NETosis have been
described. One mode, vital NETosis, rapidly initiates gradual DNA leakage, while another, suicidal
NETosis, results in the delayed but singular expulsion of a cell’s total DNA content and concomitant cell
death [109]. Several studies have recently characterized NET production in the context of SARS-CoV-2
infection [134,137,138]. In particular, [134] supports a model in which SARS-CoV-2 directly induces
neutrophils to undergo protein arginine deiminase 4 (PAD4)-dependent NETosis [139]. Moreover,
evidence suggests that while PAD-4 is essential for suicidal NETosis [109], it is dispensable for vital
NETosis [140]. For this reason, we assume SARS-CoV-2 induces suicidal NETosis, resulting in cell death.

It appears that significant interaction with pathogens (e.g. infection, phagocytosis, or binding to cell
surface receptors) is required for NETosis. In support of this assumption, neutrophils were observed to
phagocytose Candida albicans prior to releasing NETs, and expression of SARS-CoV-2 antigens correlates
strongly with NET production in vitro [134]. For concreteness, we assume that immune cells will only
produce toxic NETs after phagocytosis of virus or infectious cells, that is, only fully active immune
cells produce NETs. Letting half of NETotic cells complete the process in three hours, and supposing
a fraction of active immune cells (50%) undergo NETosis, we set ρT = ln(2)/6 h−1≈ 0.12 h−1.

The extent of NET-induced cell death is determined by the proportion of the alveolar surface that is in
contact with NETs. We estimate this proportion using information from [136] and [141]. In response to
SARS-CoV-2, neutrophils produce long strands of NETs with an average length of 50 μm [136]. Images of
NETs from [136] and [141], suggest individual neutrophils produce many NET strands. Given the
alveolar surface of a single lung is about 50 m2 [58], and treating each NET as a circular disc with a
radius of 50 μm, it would take roughly 6 × 109 NETs to cover the entire alveolar surface. We assume a
small fraction (5%) of a cell’s surface needs be covered to induce maximal death, so that the half-
saturation constant for the rate of NET-induced cell death is 3� 108 NETs. Similar to cells, we
measure NETs in units of 106 and take KT ¼ 3� 102 106 NETs.

Meanwhile, evidence suggests that NETs induce multiple modes of cell death in epithelial cells,
including pyroptosis, apoptosis and necrosis [82]. In general, the time to initiate cell death is context-
dependent, occurring hours or days post-exposure [142]. However, evidence suggests that in response
to NETs and toxic NET components, epithelial cells undergo death in a matter of hours [82,83,134].
We take r = 0.1, so that the average time to die post NET exposure is 10 h.

Note that we do not include NET-induced removal of virus in this model, since the impact of NETs
on SARS-CoV-2 has not been established. Although NETS are able to trap and/or neutralize some
viruses, others are resistant to the effects of NETS [109,143].

NETs may be degraded by DNase [87] or endocytosed by macrophages [88,144]. As DNase is weakly
expressed in the lung tissue [145], and evidence suggests that DNase may be insufficient to completely
clear NETs under physiological conditions [88,138,146], we focus on clearance by immune cells. We are
unable to find estimates of the rate of NET clearance by immune cells, so we take these parameters as
identical to those for the clearance of other dead cells.
Appendix B. Figures
(see figures 8, 9, 10, 11, 12).
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Figure 8. Simulated epithelial cell populations post infection over 60 days with parameters and initial values from tables 2 and 3.
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