Dr. Xiaoya Zha
Professor
Fall 2022: Tue/Thur 11:10-1:00
Departments / Programs
Degree Information
- PHD, Ohio State University (1993)
- MS, Ohio State University (1990)
- MS, Huazhong University of Science and Technology (1984)
- BS, Anhui University (1982)
Areas of Expertise
Graph Theory, Combinatorics
Publications
[58] Y. Yang and X. Zha, Partial-dual Euler genus distributions for bouquets with small Euler genus, Ars Math Comtemp. 22 (2022), #3.09, doi:10.26493/1855-3974.2603.376.
[57] Mark N. Ellingham, Songling Shan, Dong Ye, Xiaoya Zha: Toughness and spanning trees in K4-minor-free graphs. J. Graph Theory 96(3): 379-402 (2021)
[56] Ervin Györi, Michael D. Plummer, Dong Ye, Xiaoya Zha: Cycle Traversability for Claw-Free Graphs and Polyhedral Maps. Comb. 40(3)...
Read More »[58] Y. Yang and X. Zha, Partial-dual Euler genus distributions for bouquets with small Euler genus, Ars Math Comtemp. 22 (2022), #3.09, doi:10.26493/1855-3974.2603.376.
[57] Mark N. Ellingham, Songling Shan, Dong Ye, Xiaoya Zha: Toughness and spanning trees in K4-minor-free graphs. J. Graph Theory 96(3): 379-402 (2021)
[56] Ervin Györi, Michael D. Plummer, Dong Ye, Xiaoya Zha: Cycle Traversability for Claw-Free Graphs and Polyhedral Maps. Comb. 40(3): 405-433 (2020)
[55] Michael D. Plummer, Dong Ye, Xiaoya Zha: Dominating maximal outerplane graphs and Hamiltonian plane triangulations. Discret. Appl. Math. 282: 162-167 (2020)
[54] Wenzhong Liu, Serge Lawrencenko, Beifang Chen, Mark N. Ellingham, Nora Hartsfield, Hui Yang, Dong Ye, Xiaoya Zha: Quadrangular embeddings of complete graphs and the Even Map Color Theorem. J. Comb. Theory, Ser. B 139: 1-26 (2019)
[53] Xiaoya Zha, Edge partition of graphs embeddable in the projective plane and the Klein bottle, J. of Math Research with Applications, 39 (2019), 581-592, DOI:10.3770/j.issn:2095-2651.2019.06.005.
[52] Baogang Xu, Xiaoya Zha: Thickness and outerthickness for embedded graphs. Discret. Math. 341(6): 1688-1695 (2018)
[51] Baogang Xu, Gexin Yu, Xiaoya Zha: A Note on Chromatic Number and Induced Odd Cycles. Electron. J. Comb. 24(4): P4.32 (2017)
[50] Michael D. Plummer, Dong Ye, Xiaoya Zha: Connectivity and Wv -Paths in Polyhedral Maps on Surfaces. Discret. Comput. Geom. 58(1): 217-231 (2017)
[49] M. N. Ellingham and Xiaoya Zha, Partial duality and closed 2-cell embeddings, J. of Combinatorics 8 (2017), 227-254, arxiv:1501.06043.
[48] Michael D. Plummer, Dong Ye, Xiaoya Zha: Dominating plane triangulations. Discret. Appl. Math. 211: 175-182 (2016)
[47] Peter Johnson and Xiaoya Zha, Scheduling n burgers for a k-burger grill: chromatic numbers with restrictions, Theory and Application of Graph, 2 (2015), Article 2.
[46] D. Christopher Stephens, Thomas W. Tucker, Xiaoya Zha: Representativity of Cayley maps. Eur. J. Comb. 39: 207-222 (2014)
[45] Michael D. Plummer, Xiaoya Zha: On a Conjecture Concerning the Petersen Graph: Part II. Electron. J. Comb. 21(1): P1.34 (2014)
[44] Roi Krakovski, D. Christopher Stephens, Xiaoya Zha: Subdivisions of K5 in Graphs Embedded on Surfaces With Face-Width at Least 5. J. Graph Theory 74(2): 182-197 (2013)
[43] Mark N. Ellingham, Xiaoya Zha: Orientable embeddings and orientable cycle double covers of projective-planar graphs. Eur. J. Comb. 32(4): 495-509 (2011)
[42] Donald Nelson, Michael D. Plummer, Neil Robertson and Xiaoya Zha , On a Conjecture Concerning the Petersen Graph, Electronic Journal of Combinatorics, 18 (2011), Article 20.
[41] Tian-Xiao He, Peter J.-S. Shiue and Xiaoya Zha, Some dense subsets of real numbers and their applications, J. Adv. Math. 4 (2011), 25-32.
[40] Michael D. Plummer, Xiaoya Zha: On certain spanning subgraphs of embeddings with applications to domination. Discret. Math. 309(14): 4784-4792 (2009)
[39] Anhua Lin, Rong Luo, Xiaoya Zha: On sharp bounds of the zero-order Randic index of certain unicyclic graphs. Appl. Math. Lett. 22(4): 585-589 (2009)
[38] Yinmei Cao, Anhua Lin, Rong Luo, Xiaoya Zha: On the minimal energy of unicyclic Hückel molecular graphs possessing Kekulé structures. Discret. Appl. Math. 157(5): 913-919 (2009)
[37] D. Christopher Stephens, Xiaoya Zha: Spanning subsets of toroidal and Klein bottle embeddings. Electron. Notes Discret. Math. 31: 241-242 (2008)
[36] Anhua Lin, Rong Luo, Donard A. Nelson, and Xiaoya Zha, The second largest Randic index of quasi-tree graphs, Monographs on Mathematical Chemistry 6 \ Recent Result in the Theory of Randic Index"(2008), 91-108.
[35] Anhua Lin, Rong Luo, Xiaoya Zha: A sharp lower bound of the Randic index of cacti with r pendants. Discret. Appl. Math. 156(10): 1725-1735 (2008)
[34] Neil Robertson, Xiaoya Zha, Yue Zhao: On the flexibility of toroidal embeddings. J. Comb. Theory, Ser. B 98(1): 43-61 (2008)
[33] Anhua Lin, Guoqiang Song, Rong Luo and Xiaoya Zha, The  first three large Randicindices of unicyclic graphs, Match Communications in Mathematical and Computer Chemistry 58 (2007), 113-125.
[32] Mark N. Ellingham, Chris Stephens, Xiaoya Zha: The nonorientable genus of complete tripartite graphs. J. Comb. Theory, Ser. B 96(4): 529-559 (2006)
[31] Ken-ichi Kawarabayashi, Chris Stephens, Xiaoya Zha: Orientable and Nonorientable Genera for Some Complete Tripartite Graphs. SIAM J. Discret. Math. 18(3): 479-487 (2004)
[30] Tian-Xiao He, Zach Sinkala and Xiaoya Zha, If F(x) =òx2x f(t)dt is constant, must f(t) = c/t? College Mathematics 36 (2005), 199-204.
[29] Mark N. Ellingham, Chris Stephens, Xiaoya Zha: Counterexamples to the nonorientable genus conjecture for complete tripartite graphs. Eur. J. Comb. 26(3-4): 387-399 (2005)
[28] Michael D. Plummer, Xiaoya Zha: On the p-factor-criticality of the Klein bottle. Discret. Math. 287(1-3): 171-175 (2004)
[27] Mark N. Ellingham, Xiaoya Zha, Yi Zhang: Spanning 2-trails from degree sum conditions. J. Graph Theory 45(4): 298-319 (2004)
[26] Mark N. Ellingham, Xiaoya Zha: Separating Cycles in Doubly Toroidal Embeddings. Graphs Comb. 19(2): 161-175 (2003)
[25] Serge Lawrencenko, Michael D. Plummer, Xiaoya Zha: Isoperimetric Constants of Infinite Plane Graphs. Discret. Comput. Geom. 28(3): 313-330 (2002)
[24] Michael Plummer and Xiaoya Zha, On the connectivity of graphs embedded in surfaces II, Electron. J. Combin. 9 (2002) #R38 (27 pages).
[23] Michael D. Plummer, Xiaoya Zha: Genus bounds for embeddings with large minimum degree and representativity. Discret. Math. 249(1-3): 167-178 (2002)
[22] Neil Robertson, Xiaoya Zha: Closed 2-cell embeddings of graphs with no V8-minors. Discret. Math. 230(1-3): 207-213 (2001)
[21] Serge Lawrencenko, Michael D. Plummer, Xiaoya Zha: Bounds for isoperimetric constants of infinite plane graphs. Discret. Appl. Math. 113(2-3): 237-241 (2001)
[20] Mark N. Ellingham, Xiaoya Zha: Toughness, trees, and walks. J. Graph Theory 33(3): 125-137 (2000)
[19] Mark N. Ellingham, Xiaoya Zha: The Spectral Radius of Graphs on Surfaces. J. Comb. Theory, Ser. B 78(1): 45-56 (2000)
[18] Michael D. Plummer, Xiaoya Zha: On the Connectivity of Graphs Embedded in Surfaces. J. Comb. Theory, Ser. B 72(2): 208-228 (1998)
[17] Xiaoya Zha: Closed 2-cell Embeddings of 5-crosscap Embeddable Graphs. Eur. J. Comb. 18(4): 461-477 (1997)
[16] Xiaoya Zha: Closed 2-cell embeddings of 4 cross-cap embeddable graphs. Discret. Math. 162(1-3): 251-266 (1996)
[15] Xiaoya Zha, Face attachments of embeddings with non-negative Euler characteristics, Congressus Numerantium 120 (1996), 139-143.
[14] Xiaoya Zha: On minimum-genus embeddings. Discret. Math. 149(1-3): 261-278 (1996)
[13] Xiaoya Zha: The closed 2-cell embeddings of 2-connected doubly toroidal graphs. Discret. Math. 145(1-3): 259-271 (1995)
[12] Xiaoya Zha, Yue Zhao: On non-null separating circuits in embedded graphs. Graph Structure Theory 1991: 349-362
[11] Xiaoya Zha: On the closed 2-cell embedding conjecture. Graph Structure Theory 1991: 391-404
[10] Xiaoya Zha: On a Conjecture on the Sperner Property. Eur. J. Comb. 10(6): 603-607 (1989)
[9] Xiaoya Zha, Anti-chains with symmetric parameters in the product of chains, J. Math. Res. & Exp., 6 (1986), 141-142.
[8] Shaochen Han and Xiaoya Zha, The refinement of Polya's enumeration theorem, Kexue Tongbao, 20 (1986), 715-716.
[7] Xiaoya Zha, The LYM and log-convex properties of a class of subsets in Boolean Algebra Bn, Kexue Tongbao, 20 (1986), 1597.
[6] Shaochen Han and Xiaoya Zha, (U1;U2)-Sperner bound and EKR bound, J. Huazhong Univ. Sci. Tech., 14 (1986), 859-863.
[5] Shaochen Han and Xiaoya Zha, On the average size of the subsets in a Sperner family and EKR family, J. Huazhong Univ. Sci. Tech., 13 (1985), 27-32.
[4] Shaochen Han and Xiaoya Zha, Sperner families with constraints on cardinalities of the subsets, J. Math., 5 (1985), 145-151.
[3] Shaochen Han, Honghui Wan and Xiaoya Zha, Generalization and applications of Bonferroni inequality, J. Math. Res. & Exp., 5 (1985), 31-34.
(Thesis)
[2] Closed 2-cell embeddings of 2-connected graphs in surfaces, dissertation for Doctor of Philosophy, Ohio-State University, 1993.
[1] Extremal properties of finite sets, thesis for Master of Science, Huazhong University of Science and Technology (China), 1984.